β-quantization, Ω-quantization and Weyl quantization of a ray in classical phase space

被引:1
|
作者
He, Rui [1 ,2 ]
Chen, Feng [2 ,3 ]
Fan, Hong-Yi [2 ]
机构
[1] West Anhui Univ, Coll Mat & Chem Engn, Luan 237012, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China
[3] Hefei Univ, Dept Math & Phys, Hefei 230022, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase space; Omega-ordered; beta-ordered; Weyl-ordered; QUANTUM-MECHANICS; OPERATORS; VIRTUE;
D O I
10.1142/S0217732314500692
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
By examining three quantization schemes of a ray function in classical phase space (a geometric ray is expressed by delta(x - lambda q - nu p)), we find that the Weyl quantization scheme can reasonably demonstrate the correspondence between classical functions and quantum mechanical operators, since delta(x - lambda q - nu p) really maps onto the operator delta(x - lambda Q - nu P), where [Q, P] = ih, and delta(x - lambda Q - nu P) represents a pure state (the coordinate- momentum intermediate representation), while beta- ordered, Omega- ordered quantization schemes delta(x - lambda q - nu p) to two different Fresnel integration kernels in Weyl-ordered form. Thus, Weyl quantization is more reasonable and preferable.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Field-theoretic Weyl quantization as a strict and continuous deformation quantization
    Binz, E
    Honegger, R
    Rieckers, A
    ANNALES HENRI POINCARE, 2004, 5 (02): : 327 - 346
  • [32] WEYL QUANTIZATION OF ANHARMONIC OSCILLATORS
    TRUONG, TT
    JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (05) : 1034 - 1043
  • [33] Weyl quantization and star products
    Bowes, D
    Hannabuss, KC
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 22 (04) : 319 - 348
  • [34] Field Quantization on Noncommutative Phase Space
    Hu, Haihua
    Cao, Xiaohua
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON LOGISTICS, ENGINEERING, MANAGEMENT AND COMPUTER SCIENCE (LEMCS 2015), 2015, 117 : 806 - 808
  • [35] The symplectic camel and phase space quantization
    de Gosson, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (47): : 10085 - 10096
  • [36] STOCHASTIC QUANTIZATION IN PHASE-SPACE
    HOROWITZ, AM
    PHYSICS LETTERS B, 1985, 156 (1-2) : 89 - 92
  • [37] Phase space quantization as a moment problem
    Kiukas, J.
    OPTICS AND SPECTROSCOPY, 2007, 103 (03) : 429 - 433
  • [38] Symmetries and classical quantization
    Nirov, KS
    Plyushchay, MS
    PHYSICS LETTERS B, 1997, 405 (1-2) : 114 - 120
  • [39] ON QUANTIZATION OF CLASSICAL SYSTEMS
    AMIET, JP
    NUOVO CIMENTO, 1963, 29 (01): : 69 - +
  • [40] A Classical Explanation of Quantization
    Groessing, Gerhard
    Pascasio, Johannes Mesa
    Schwabl, Herbert
    FOUNDATIONS OF PHYSICS, 2011, 41 (09) : 1437 - 1453