β-quantization, Ω-quantization and Weyl quantization of a ray in classical phase space

被引:1
|
作者
He, Rui [1 ,2 ]
Chen, Feng [2 ,3 ]
Fan, Hong-Yi [2 ]
机构
[1] West Anhui Univ, Coll Mat & Chem Engn, Luan 237012, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China
[3] Hefei Univ, Dept Math & Phys, Hefei 230022, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase space; Omega-ordered; beta-ordered; Weyl-ordered; QUANTUM-MECHANICS; OPERATORS; VIRTUE;
D O I
10.1142/S0217732314500692
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
By examining three quantization schemes of a ray function in classical phase space (a geometric ray is expressed by delta(x - lambda q - nu p)), we find that the Weyl quantization scheme can reasonably demonstrate the correspondence between classical functions and quantum mechanical operators, since delta(x - lambda q - nu p) really maps onto the operator delta(x - lambda Q - nu P), where [Q, P] = ih, and delta(x - lambda Q - nu P) represents a pure state (the coordinate- momentum intermediate representation), while beta- ordered, Omega- ordered quantization schemes delta(x - lambda q - nu p) to two different Fresnel integration kernels in Weyl-ordered form. Thus, Weyl quantization is more reasonable and preferable.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] BOUNDEDNESS OF WEYL QUANTIZATION
    QI MINYOU(M.Y.CHI)
    CHEN WENYI(Institute of Mathematics
    Chinese Annals of Mathematics, 1999, (01) : 3 - 5
  • [12] Quantum corrections to the Weyl quantization of the classical time of arrival
    Pablico, Dean Alvin L.
    Galapon, Eric A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (02):
  • [13] Quantum corrections to the Weyl quantization of the classical time of arrival
    Dean Alvin L. Pablico
    Eric A. Galapon
    The European Physical Journal Plus, 138
  • [14] Flux Quantization on Phase Space
    Sati, Hisham
    Schreiber, Urs
    ANNALES HENRI POINCARE, 2024,
  • [15] On the Mechanism of Quantization of Classical Chaos and Quantization Conditions
    Takatsuka, Kazuo
    LET'S FACE CHAOS THROUGH NONLINEAR DYNAMICS, 2008, 1076 : 235 - 244
  • [16] Generalized Weyl quantization on the cylinder and the quantum phase
    Przanowski, Maciej
    Brzykcy, Przemyslaw
    ANNALS OF PHYSICS, 2013, 337 : 34 - 48
  • [17] A pseudo-classical model of a Weyl particle and quantization of classical constants
    Gitman D.M.
    Tyutin I.V.
    Russian Physics Journal, 2002, 45 (7) : 690 - 694
  • [18] The Weyl quantization and the quantum group quantization of the moduli space of flat SU(2)-connections on the torus are the same
    Gelca, R
    Uribe, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (03) : 493 - 512
  • [19] The pointwise product in Weyl quantization
    Dubin, DA
    Hennings, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (26): : 6693 - 6711
  • [20] Weyl quantization of fractional derivatives
    Tarasov, Vasily E.
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (10)