Equal opportunity networks, distance-balanced graphs, and Wiener game

被引:29
|
作者
Balakrishnan, Kannan [1 ]
Bresar, Bostjan [2 ,6 ]
Changat, Manoj [3 ]
Klavzar, Sandi [2 ,4 ,6 ]
Vesel, Aleksander [2 ,6 ]
Pletersek, Petra Zigert [5 ,6 ]
机构
[1] Cochin Univ Sci & Technol, Dept Comp Applicat, Cochin, Kerala, India
[2] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[3] Univ Kerala, Dept Futures Studies, Trivandrum 695001, Kerala, India
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
[5] Univ Maribor, Fac Chem & Chem Engn, Maribor, Slovenia
[6] Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
Wiener index; Equal opportunity network; Distance-balanced graph; Wiener game; STAR-LIKE GRAPHS; INDEX; CONNECTIVITY;
D O I
10.1016/j.disopt.2014.01.002
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a graph G and a set X subset of V(G), the relative Wiener index of X in G is defined as W-x (G) = Sigma{u, upsilon}(is an element of) (x/2) d(G)(u, upsilon). The graphs G (of even order) in which for every partition V (G) = V-1 + V-2 of the vertex set V (G) such that vertical bar V-1 vertical bar = vertical bar V-2 vertical bar we have Wv(1) (G) = Wv(2) (G) are called equal opportunity graphs. In this note we prove that a graph G of even order is an equal opportunity graph if and only if it is a distance-balanced graph. The latter graphs are known by several characteristic properties, for instance, they are precisely the graphs Gin which all vertices u epsilon V (G) have the same total distance D-G(u) = Sigma(upsilon is an element of V(G)) d(G)(u, upsilon). Some related problems are posed along the way, and the so-called Wiener game is introduced. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:150 / 154
页数:5
相关论文
共 50 条
  • [21] Strongly distance-balanced graphs and graph products
    Balakrishnan, Kannan
    Changat, Manoj
    Peterin, Iztok
    Spacapan, Simon
    Sparl, Primoz
    Subhamathi, Ajitha R.
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) : 1048 - 1053
  • [22] A note on the distance-balanced property of generalized Petersen graphs
    Yang, Rui
    Hou, Xinmin
    Li, Ning
    Zhong, Wei
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [23] SOME RESULTS ON DISTANCED-BALANCED AND STRONGLY DISTANCE-BALANCED GRAPHS
    Faramarzi, H.
    Rahbarnia, F.
    Tavakoli, M.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (40): : 98 - 107
  • [24] The strongly distance-balanced property of the generalized Petersen graphs
    Kutnar, Klavdija
    Malnic, Aleksander
    Marusic, Dragan
    Miklavic, Stefko
    ARS MATHEMATICA CONTEMPORANEA, 2009, 2 (01) : 41 - 47
  • [25] The complexity of obtaining a distance-balanced graph
    Cabello, Sergio
    Luksic, Primoz
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [26] Status connectivity indices and co-indices of graphs and its computation to some distance-balanced graphs
    Ramane, Harishchandra S.
    Yalnaik, Ashwini S.
    Sharafdini, Reza
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 98 - 108
  • [27] Local testability of distance-balanced quantum codes
    Wills, Adam
    Lin, Ting-Chun
    Hsieh, Min-Hsiu
    NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [28] Total distance, Wiener index and opportunity index in wreath products of star graphs
    Cavaleri, Matteo
    Donno, Alfredo
    Scozzari, Andrea
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (01):
  • [29] l-distance-balanced graphs
    Miklavic, Stefko
    Sparl, Primoz
    DISCRETE APPLIED MATHEMATICS, 2018, 244 : 143 - 154
  • [30] On 2-distance-balanced graphs
    Frelih, Bostjan
    Miklavic, Stefko
    ARS MATHEMATICA CONTEMPORANEA, 2018, 15 (01) : 81 - 95