Equal opportunity networks, distance-balanced graphs, and Wiener game

被引:29
|
作者
Balakrishnan, Kannan [1 ]
Bresar, Bostjan [2 ,6 ]
Changat, Manoj [3 ]
Klavzar, Sandi [2 ,4 ,6 ]
Vesel, Aleksander [2 ,6 ]
Pletersek, Petra Zigert [5 ,6 ]
机构
[1] Cochin Univ Sci & Technol, Dept Comp Applicat, Cochin, Kerala, India
[2] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[3] Univ Kerala, Dept Futures Studies, Trivandrum 695001, Kerala, India
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
[5] Univ Maribor, Fac Chem & Chem Engn, Maribor, Slovenia
[6] Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
Wiener index; Equal opportunity network; Distance-balanced graph; Wiener game; STAR-LIKE GRAPHS; INDEX; CONNECTIVITY;
D O I
10.1016/j.disopt.2014.01.002
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a graph G and a set X subset of V(G), the relative Wiener index of X in G is defined as W-x (G) = Sigma{u, upsilon}(is an element of) (x/2) d(G)(u, upsilon). The graphs G (of even order) in which for every partition V (G) = V-1 + V-2 of the vertex set V (G) such that vertical bar V-1 vertical bar = vertical bar V-2 vertical bar we have Wv(1) (G) = Wv(2) (G) are called equal opportunity graphs. In this note we prove that a graph G of even order is an equal opportunity graph if and only if it is a distance-balanced graph. The latter graphs are known by several characteristic properties, for instance, they are precisely the graphs Gin which all vertices u epsilon V (G) have the same total distance D-G(u) = Sigma(upsilon is an element of V(G)) d(G)(u, upsilon). Some related problems are posed along the way, and the so-called Wiener game is introduced. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:150 / 154
页数:5
相关论文
共 50 条
  • [11] Further results on distance-balanced graphs
    Tavakoli, M., 1600, Politechnica University of Bucharest (75):
  • [12] Distance-balanced graphs: Symmetry conditions
    Kutnar, Klavdija
    Malnic, Aleksander
    Marusic, Dragan
    Miklavic, Stefko
    DISCRETE MATHEMATICS, 2006, 306 (16) : 1881 - 1894
  • [13] FURTHER RESULTS ON DISTANCE-BALANCED GRAPHS
    Tavakoli, M.
    Rahbarnia, F.
    Ashrafi, A. R.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2013, 75 (01): : 77 - 84
  • [14] On the connectivity of bipartite distance-balanced graphs
    Miklavic, Stefko
    Sparl, Primoz
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (02) : 237 - 247
  • [15] Quasi-λ-distance-balanced graphs
    Abedi, Amirabbas
    Alaeiyan, Mehdi
    Hujdurovic, Ademir
    Kutnar, Klavdija
    DISCRETE APPLIED MATHEMATICS, 2017, 227 : 21 - 28
  • [16] ON THE NEW EXTENSION OF DISTANCE-BALANCED GRAPHS
    Faghani, Morteza
    Pourhadi, Ehsan
    Kharazi, Hassan
    TRANSACTIONS ON COMBINATORICS, 2016, 5 (04) : 21 - 34
  • [17] On certain regular nicely distance-balanced graphs
    Fernández, Blas
    Miklavič, Štefko
    Penjić, Safet
    arXiv, 2021,
  • [18] Distance-balanced graphs and travelling salesman problems
    Cavaleri, Matteo
    Donno, Alfredo
    ARS MATHEMATICA CONTEMPORANEA, 2020, 19 (02) : 311 - 324
  • [19] On some problems regarding distance-balanced graphs
    Fernandez, Blas
    Hujdurovic, Ademir
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 106
  • [20] ON CERTAIN REGULAR NICELY DISTANCE-BALANCED GRAPHS
    Fernandez, Blas
    Miklavic, Stefko
    Penjic, Safet
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2023, 65 (01): : 165 - 185