Equal opportunity networks, distance-balanced graphs, and Wiener game

被引:29
|
作者
Balakrishnan, Kannan [1 ]
Bresar, Bostjan [2 ,6 ]
Changat, Manoj [3 ]
Klavzar, Sandi [2 ,4 ,6 ]
Vesel, Aleksander [2 ,6 ]
Pletersek, Petra Zigert [5 ,6 ]
机构
[1] Cochin Univ Sci & Technol, Dept Comp Applicat, Cochin, Kerala, India
[2] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[3] Univ Kerala, Dept Futures Studies, Trivandrum 695001, Kerala, India
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
[5] Univ Maribor, Fac Chem & Chem Engn, Maribor, Slovenia
[6] Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
Wiener index; Equal opportunity network; Distance-balanced graph; Wiener game; STAR-LIKE GRAPHS; INDEX; CONNECTIVITY;
D O I
10.1016/j.disopt.2014.01.002
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a graph G and a set X subset of V(G), the relative Wiener index of X in G is defined as W-x (G) = Sigma{u, upsilon}(is an element of) (x/2) d(G)(u, upsilon). The graphs G (of even order) in which for every partition V (G) = V-1 + V-2 of the vertex set V (G) such that vertical bar V-1 vertical bar = vertical bar V-2 vertical bar we have Wv(1) (G) = Wv(2) (G) are called equal opportunity graphs. In this note we prove that a graph G of even order is an equal opportunity graph if and only if it is a distance-balanced graph. The latter graphs are known by several characteristic properties, for instance, they are precisely the graphs Gin which all vertices u epsilon V (G) have the same total distance D-G(u) = Sigma(upsilon is an element of V(G)) d(G)(u, upsilon). Some related problems are posed along the way, and the so-called Wiener game is introduced. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:150 / 154
页数:5
相关论文
共 50 条
  • [1] On distance-balanced graphs
    Ilic, Aleksandar
    Klavzar, Sandi
    Milanovic, Marjan
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (03) : 733 - 737
  • [2] Distance-Balanced Graphs
    Janja Jerebic
    Sandi Klavžar
    Douglas F. Rall
    Annals of Combinatorics, 2008, 12 : 71 - 79
  • [3] Distance-balanced graphs
    Jerebic, Janja
    Klavzar, Sandi
    Rall, Douglas F.
    ANNALS OF COMBINATORICS, 2008, 12 (01) : 71 - 79
  • [4] Remarks on Distance-Balanced Graphs
    Tavakoli, M.
    Yousefi-Azari, H.
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2011, 2 (02): : 67 - 71
  • [5] Nicely distance-balanced graphs
    Kutnar, Klavdija
    Miklavic, Stefko
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 39 : 57 - 67
  • [6] On Distance-Balanced Generalized Petersen Graphs
    Ma, Gang
    Wang, Jianfeng
    Klavzar, Sandi
    ANNALS OF COMBINATORICS, 2024, 28 (01) : 329 - 349
  • [7] Edge distance-balanced of Hamming graphs
    Karami, Hamed
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08): : 2667 - 2672
  • [8] NOTE ON EDGE DISTANCE-BALANCED GRAPHS
    Tavakoli, M.
    Yousefi-Azari, H.
    Ashrafi, A. R.
    TRANSACTIONS ON COMBINATORICS, 2012, 1 (01) : 1 - 6
  • [9] On Distance-Balanced Generalized Petersen Graphs
    Gang Ma
    Jianfeng Wang
    Sandi Klavžar
    Annals of Combinatorics, 2024, 28 : 329 - 349
  • [10] Distance-Balanced Closure of Some Graphs
    Ghareghani, N.
    Manoochehrian, B.
    Mohammad-Noori, M.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2015, 10 (01): : 95 - 102