Properties of a multipole ion trap studied by evaporative ion losses

被引:9
|
作者
Lakhmanskaya, O. Y. [1 ]
Best, T. [1 ]
Kumar, S. S. [1 ]
Endres, E. S. [1 ]
Hauser, D. [1 ]
Otto, R. [2 ]
Eisenbach, S. [3 ]
von Zastrow, A. [4 ]
Wester, R. [1 ]
机构
[1] Univ Insbruck, Inst Ionenphys & Angew Phys, A-6020 Innsbruck, Austria
[2] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[3] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany
[4] Radboud Univ Nijmegen, Inst Mol & Mat IMM, NL-6525 AJ Nijmegen, Netherlands
基金
欧洲研究理事会;
关键词
Ion trap; 22-Pole trap; Ion temperature; Buffer gas cooling; ACTION SPECTROSCOPY; TEMPERATURE; H-3(+);
D O I
10.1016/j.ijms.2014.03.001
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
We have studied a scheme for analysing the effective trapping potential for ions in a 22-pole ion trap, based on the strong dependence of the lifetime of the ions on the buffer gas temperature. We distinguish two regimes for ion losses, either over one of the two end cap electrodes (axial direction) or over the effective radiofrequency potential (radial direction), and examine these schemes under different trap settings. We have found that evaporation over one of the end caps yields an effective temperature of the ions that is much larger than the buffer gas temperature. This may be a hint for an enhancement of the high-energy tail of the ions' velocity distribution. We also observe and investigate a breakdown of thermalisation for trap temperatures lower than 25 K. Measurements for OH- and D- anions have shown that this feature is independent of both the buffer gas to ion mass ratio and the trapping parameters. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:281 / 286
页数:6
相关论文
共 50 条
  • [41] Ion trap reinvented
    不详
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2010, 29 (04) : VII - VIII
  • [42] Cold ion-polar-molecule reactions studied with a combined Stark-velocity-filter-ion-trap apparatus
    Okada, Kunihiro
    Suganuma, Takuya
    Furukawa, Takahiro
    Takayanagi, Toshinobu
    Wada, Michiharu
    Schuessler, Hans A.
    PHYSICAL REVIEW A, 2013, 87 (04):
  • [43] Ion trajectory simulation of linear multipole ion traps for analysis of spatial ion distribution
    Handa, Takefumi
    Terasaki, Akira
    MOLECULAR PHYSICS, 2024, 122 (1-2)
  • [44] Comparison of the Paul ion trap to the linear ion trap for use in global proteomics
    Riter, LS
    Gooding, KM
    Hodge, BD
    Julian, RK
    PROTEOMICS, 2006, 6 (06) : 1735 - 1740
  • [45] The effect of ion trap temperature on the dissociation of peptide ions in a quadrupole ion trap
    Jue, April L.
    Racine, Alawee H.
    Glish, Gary L.
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2011, 301 (1-3) : 74 - 83
  • [46] Optimum Radius Size between Cylindrical Ion Trap and Quadrupole Ion Trap
    Chaharborj, Sarkhosh Seddighi
    Kiai, Seyyed Mahmod Sadat
    Arifin, Norihan Md
    Gheisari, Yousof
    MASS SPECTROMETRY LETTERS, 2015, 6 (03) : 59 - 64
  • [47] OPERATION LIMITS OF MULTIPOLE ION SOURCES
    GOEDE, APH
    GREEN, TS
    PHYSICS OF FLUIDS, 1982, 25 (10) : 1797 - 1810
  • [48] An Ion Mobility/Ion Trap/Photodissociation Instrument for Characterization of Ion Structure
    Zucker, Steven M.
    Lee, Sunyoung
    Webber, Nathaniel
    Valentine, Stephen J.
    Reilly, James P.
    Clemmer, David E.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2011, 22 (09) : 1477 - 1485
  • [49] Positive ion transmission mode ion/ion reactions in a hybrid linear ion trap
    Wu, J
    Hager, JW
    Xia, Y
    Londry, FA
    McLuckey, SA
    ANALYTICAL CHEMISTRY, 2004, 76 (17) : 5006 - 5015
  • [50] Dresden EBIT: Trap properties and ion production studied by X-ray spectroscopy of helium-like argon
    Kentsch, U
    Zschornack, G
    Grossmann, F
    Ovsyannikov, VP
    Ullmann, F
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2003, 205 : 266 - 270