Learning Local Instance Constraint for Multi-label Classification

被引:0
|
作者
Luo, Shang [1 ,2 ]
Wu, Xiaofeng [1 ,2 ]
Wang, Bin [1 ,2 ]
Zhang, Liming [1 ,2 ]
机构
[1] Fudan Univ, Key Lab Informat Sci Electromagnet Waves, Shanghai, Peoples R China
[2] Fudan Univ, Res Ctr Smart Networks & Syst, Sch Informat Sci & Technol, Shanghai, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
CNN; Multi-label classification; Multi-task;
D O I
10.1007/978-3-319-71607-7_25
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Compared to single-label image classification, multi-label image classification outputs unknown-number objects of different categories for an input image. For image-label relevance in multi-label classification, how to incorporate local information of objects with global information of label representation is still a challenging problem. In this paper, we propose an end-to-end Convolutional Neural Network (CNN) based method to address this problem. First, we leverage CNN to extract hierarchical features of input images and the dilated convolution operator is adopted to expand receptive fields without additional parameters compared to common convolution operator. Then, one loss function is used to model local information of instance activations in convolutional feature maps and the other to model global information of label representation. Finally, the CNN is trained end-to-end with a multi-task loss. Experimental results show that the proposed proposal-free single-CNN framework with a multi-task loss can achieve the state-of-the-art performance compared with existing methods.
引用
收藏
页码:284 / 294
页数:11
相关论文
共 50 条
  • [21] A multi-instance multi-label learning algorithm based on instance correlations
    Chanjuan Liu
    Tongtong Chen
    Xinmiao Ding
    Hailin Zou
    Yan Tong
    [J]. Multimedia Tools and Applications, 2016, 75 : 12263 - 12284
  • [22] SIMULTANEOUS INSTANCE ANNOTATION AND CLUSTERING IN MULTI-INSTANCE MULTI-LABEL LEARNING
    Pham, Anh T.
    Raich, Raviv
    Fern, Xiaoli Z.
    [J]. 2015 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2015,
  • [23] Dynamic Programming for Instance Annotation in Multi-Instance Multi-Label Learning
    Pham, Anh T.
    Raich, Raviv
    Fern, Xiaoli Z.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2381 - 2394
  • [24] Simultaneous Nonlinear Label-Instance Embedding for Multi-label Classification
    Kimura, Keigo
    Kudo, Mineichi
    Sun, Lu
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2016, 2016, 10029 : 15 - 25
  • [25] Multi-task multi-label multiple instance learning
    Yi SHENJianping FANDepartment of Computer ScienceUniversity of North Carolina at Charlotte USA
    [J]. JournalofZhejiangUniversity-ScienceC(Computers&Electronics), 2010, 11 (11) : 860 - 871
  • [26] Multi-task multi-label multiple instance learning
    Shen, Yi
    Fan, Jian-ping
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2010, 11 (11): : 860 - 871
  • [27] A FRAMEWORK OF HASHING FOR MULTI-INSTANCE MULTI-LABEL LEARNING
    Liu, Man
    Xu, Xinshun
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2015, 11 (03): : 921 - 934
  • [29] Multi-label video classification via coupling attentional multiple instance learning with label relation graph *
    Li, Xuewei
    Wu, Hongjun
    Li, Mengzhu
    Liu, Hongzhe
    [J]. PATTERN RECOGNITION LETTERS, 2022, 156 : 53 - 59
  • [30] Multi-instance multi-label image classification: A neural approach
    Chen, Zenghai
    Chi, Zheru
    Fu, Hong
    Feng, Dagan
    [J]. NEUROCOMPUTING, 2013, 99 : 298 - 306