Simultaneous Nonlinear Label-Instance Embedding for Multi-label Classification

被引:6
|
作者
Kimura, Keigo [1 ]
Kudo, Mineichi [1 ]
Sun, Lu [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
关键词
Multi-label classification; Nonlinear embedding; Visualization; EIGENMAPS;
D O I
10.1007/978-3-319-49055-7_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, unlike previous many linear embedding methods, we propose a non-linear embedding method for multi-label classification. The algorithm embeds both instances and labels into the same space, reflecting label-instance relationship, label-label relationship and instance-instance relationship as faithfully as possible, simultaneously. Such an embedding into two-dimensional space is useful for simultaneous visualization of instances and labels. In addition linear and nonlinear mapping methods of a testing instance are also proposed for multi-label classification. The experiments on thirteen benchmark datasets showed that the proposed algorithm can deal with better small-scale problems, especially in the number of instances, compared with the state-of-the-art algorithms.
引用
收藏
页码:15 / 25
页数:11
相关论文
共 50 条
  • [1] Group preserving label embedding for multi-label classification
    Kumar, Vikas
    Pujari, Arun K.
    Padmanabhan, Vineet
    Kagita, Venkateswara Rao
    [J]. PATTERN RECOGNITION, 2019, 90 : 23 - 34
  • [2] Label Embedding for Multi-label Classification Via Dependence Maximization
    Li, Yachong
    Yang, Youlong
    [J]. NEURAL PROCESSING LETTERS, 2020, 52 (02) : 1651 - 1674
  • [3] Label Embedding for Multi-label Classification Via Dependence Maximization
    Yachong Li
    Youlong Yang
    [J]. Neural Processing Letters, 2020, 52 : 1651 - 1674
  • [4] Cost-sensitive label embedding for multi-label classification
    Kuan-Hao Huang
    Hsuan-Tien Lin
    [J]. Machine Learning, 2017, 106 : 1725 - 1746
  • [5] Cost-sensitive label embedding for multi-label classification
    Huang, Kuan-Hao
    Lin, Hsuan-Tien
    [J]. MACHINE LEARNING, 2017, 106 (9-10) : 1725 - 1746
  • [6] Multi-label classification using hierarchical embedding
    Kumar, Vikas
    Pujari, Arun K.
    Padmanabhan, Vineet
    Sahu, Sandeep Kumar
    Kagita, Venkateswara Rao
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2018, 91 : 263 - 269
  • [7] SIMULTANEOUS INSTANCE ANNOTATION AND CLUSTERING IN MULTI-INSTANCE MULTI-LABEL LEARNING
    Pham, Anh T.
    Raich, Raviv
    Fern, Xiaoli Z.
    [J]. 2015 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2015,
  • [8] Learning Local Instance Constraint for Multi-label Classification
    Luo, Shang
    Wu, Xiaofeng
    Wang, Bin
    Zhang, Liming
    [J]. IMAGE AND GRAPHICS (ICIG 2017), PT I, 2017, 10666 : 284 - 294
  • [9] A Label Embedding Method for Multi-label Classification via Exploiting Local Label Correlations
    Wang, Xidong
    Li, Jun
    Xu, Jianhua
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2019, PT V, 2019, 1143 : 168 - 180
  • [10] Incorporating Instance Correlations in Multi-label Classification via Label-Space
    de Abreu, Iuri Bonna M.
    Mantovani, Rafael G.
    Cerri, Ricardo
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 581 - 588