Simultaneous Nonlinear Label-Instance Embedding for Multi-label Classification

被引:6
|
作者
Kimura, Keigo [1 ]
Kudo, Mineichi [1 ]
Sun, Lu [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
关键词
Multi-label classification; Nonlinear embedding; Visualization; EIGENMAPS;
D O I
10.1007/978-3-319-49055-7_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, unlike previous many linear embedding methods, we propose a non-linear embedding method for multi-label classification. The algorithm embeds both instances and labels into the same space, reflecting label-instance relationship, label-label relationship and instance-instance relationship as faithfully as possible, simultaneously. Such an embedding into two-dimensional space is useful for simultaneous visualization of instances and labels. In addition linear and nonlinear mapping methods of a testing instance are also proposed for multi-label classification. The experiments on thirteen benchmark datasets showed that the proposed algorithm can deal with better small-scale problems, especially in the number of instances, compared with the state-of-the-art algorithms.
引用
收藏
页码:15 / 25
页数:11
相关论文
共 50 条
  • [11] Multi-label classification by formulating label-specific features from simultaneous instance level and feature level
    Yuanyuan Guan
    Wenhui Li
    Boxiang Zhang
    Bing Han
    Manglai Ji
    [J]. Applied Intelligence, 2021, 51 : 3375 - 3390
  • [12] Multi-label classification by formulating label-specific features from simultaneous instance level and feature level
    Guan, Yuanyuan
    Li, Wenhui
    Zhang, Boxiang
    Han, Bing
    Ji, Manglai
    [J]. APPLIED INTELLIGENCE, 2021, 51 (06) : 3375 - 3390
  • [13] Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach
    Briggs, Forrest
    Lakshminarayanan, Balaji
    Neal, Lawrence
    Fern, Xiaoli Z.
    Raich, Raviv
    Hadley, Sarah J. K.
    Hadley, Adam S.
    Betts, Matthew G.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 131 (06): : 4640 - 4650
  • [14] Metric Learning-Based Multi-Instance Multi-Label Classification With Label Correlation
    Hu, Haifeng
    Cui, Zhikai
    Wu, Jiansheng
    Wang, Kun
    [J]. IEEE ACCESS, 2019, 7 : 109899 - 109909
  • [15] Multi-label classification of legal text based on label embedding and capsule network
    Chen, Zhe
    Li, Shang
    Ye, Lin
    Zhang, Hongli
    [J]. APPLIED INTELLIGENCE, 2023, 53 (06) : 6873 - 6886
  • [16] Multi-label text classification via joint learning from label embedding and label correlation
    Liu, Huiting
    Chen, Geng
    Li, Peipei
    Zhao, Peng
    Wu, Xindong
    [J]. NEUROCOMPUTING, 2021, 460 : 385 - 398
  • [17] SUPERVISED LOW DIMENSIONAL EMBEDDING FOR MULTI-LABEL CLASSIFICATION
    Chen, Zi-Jie
    Hao, Zhi-Feng
    [J]. PROCEEDINGS OF 2014 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2014, : 193 - 199
  • [18] Multi-label classification of legal text based on label embedding and capsule network
    Zhe Chen
    Shang Li
    Lin Ye
    Hongli Zhang
    [J]. Applied Intelligence, 2023, 53 : 6873 - 6886
  • [19] Label Expansion for Multi-Label Classification
    Rivolli, Adriano
    Soares, Carlos
    de Carvalho, Andre C. P. L. F.
    [J]. 2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 414 - 419
  • [20] Multi-Label Classification by Mining Label and Instance Correlations from Heterogeneous Information Networks
    Kong, Xiangnan
    Cao, Bokai
    Yu, Philip S.
    [J]. 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, : 614 - 622