GRAPH-CUT-BASED NODE EMBEDDING FOR DIMENSIONALITY REDUCTION AND CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES

被引:1
|
作者
Su, Yuanchao [1 ]
Jiang, Mengying [2 ]
Gao, Lianru [3 ]
You, Xueer [1 ]
Sun, Xu [3 ]
Li, Pengfei [1 ]
机构
[1] Xian Univ Sci & Technol, Coll Geomat, Xian 710054, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral Image Classification; Dimensionality Reduction; Node Embedding; Graph Theory; EXTREME LEARNING-MACHINE;
D O I
10.1109/IGARSS46834.2022.9883902
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Dimensionality reduction (DR) is a common preprocessing technology for hyperspectral images (HSIs). Recently, many neural networks can implement DR to remove the redundant information by node embedding. However, numerous hidden-layer parameters limit the generalization ability of the node embedding. In this paper, we develop a graph-cut-based node embedding (GCNE) that can be used for DR of HSIs. The embedding can refine correlations by a graph-cut strategy, and it can avoid numerous parameters when using graph models. Moreover, we combine the graph-cut strategy and extreme learning machine (ELM) to achieve HSI classification. The effectiveness of the proposed method is verified by using real HSIs. Compared with other state-of-the-art DR and classification methods, the proposed approach demonstrates very competitive performance.
引用
收藏
页码:1720 / 1723
页数:4
相关论文
共 50 条
  • [31] Dimensionality Reduction of Hyperspectral Images Based on Improved Spatial-Spectral Weight Manifold Embedding
    Liu, Hong
    Xia, Kewen
    Li, Tiejun
    Ma, Jie
    Owoola, Eunice
    [J]. SENSORS, 2020, 20 (16) : 1 - 25
  • [32] Dimensionality Reduction of Hyperspectral Images Based on Robust Spatial Information Using Locally Linear Embedding
    Fang, Yu
    Li, Hao
    Ma, Yong
    Liang, Kun
    Hu, Yingjie
    Zhang, Shaojie
    Wang, Hongyuan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (10) : 1712 - 1716
  • [33] Dimensionality Reduction for the Feature System in Classification of Hyperspectral Earth Remote Sensing Data by Use of Neural Networks
    Kozik, V., I
    Nezhevenko, E. S.
    [J]. OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2022, 58 (01) : 1 - 7
  • [34] Dimensionality Reduction for the Feature System in Classification of Hyperspectral Earth Remote Sensing Data by Use of Neural Networks
    V. I. Kozik
    E. S. Nezhevenko
    [J]. Optoelectronics, Instrumentation and Data Processing, 2022, 58 : 1 - 7
  • [35] Dimensionality Reduction and Classification of Hyperspectral Images Using Object-Based Image Analysis
    Kavzoglu, Taskin
    Tonbul, Hasan
    Erdemir, Merve Yildiz
    Colkesen, Ismail
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2018, 46 (08) : 1297 - 1306
  • [36] SPATIAL-SPECTRAL GRAPH-BASED NONLINEAR EMBEDDING DIMENSIONALITY REDUCTION FOR HYPERSPECTRAL IMAGE CLASSIFICAITON
    Zhang, Xiangrong
    Han, Yaru
    Huyan, Ning
    Li, Chen
    Feng, Jie
    Gao, Li
    Ma, Xiaoxiao
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8472 - 8475
  • [37] Dimensionality Reduction and Classification of Hyperspectral Images Using Object-Based Image Analysis
    Taskin Kavzoglu
    Hasan Tonbul
    Merve Yildiz Erdemir
    Ismail Colkesen
    [J]. Journal of the Indian Society of Remote Sensing, 2018, 46 : 1297 - 1306
  • [38] Sparse Graph Regularization for Hyperspectral Remote Sensing Image Classification
    Xue, Zhaohui
    Du, Peijun
    Li, Jun
    Su, Hongjun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (04): : 2351 - 2366
  • [39] Fractal-based dimensionality reduction of hyperspectral images
    Jayanta Kumar Ghosh
    Ankur Somvanshi
    [J]. Journal of the Indian Society of Remote Sensing, 2008, 36 : 235 - 241
  • [40] Fractal-based dimensionality reduction of hyperspectral images
    Ghosh, Jayanta Kumar
    Somvanshi, Ankur
    [J]. PHOTONIRVACHAK-JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2008, 36 (03): : 235 - 241