Ultrathin Injectable Sensors of Temperature, Thermal Conductivity, and Heat Capacity for Cardiac Ablation Monitoring

被引:49
|
作者
Koh, Ahyeon [1 ]
Gutbrod, Sarah R. [2 ]
Meyers, Jason D. [2 ]
Lu, Chaofeng [3 ,4 ,5 ]
Webb, Richard Chad [1 ]
Shin, Gunchul [1 ]
Li, Yuhang [6 ]
Kang, Seung-Kyun [1 ]
Huang, Yonggang [5 ]
Efimov, Igor R. [2 ,7 ]
Rogers, John A. [1 ]
机构
[1] Univ Illinois, Frederick Seitz Mat Res Lab, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[2] Washington Univ, Dept Biomed Engn, St Louis, MO 63130 USA
[3] Zhejiang Univ, Dept Civil Engn, Hangzhou 310058, Zhejiang, Peoples R China
[4] Zhejiang Univ, Soft Matter Res Ctr, Hangzhou 310058, Zhejiang, Peoples R China
[5] Northwestern Univ, Dept Mech Engn & Civil & Environm Engn, Evanston, IL 60208 USA
[6] Beihang Univ, Inst Solid Mech, Beijing 100191, Peoples R China
[7] George Washington Univ, Dept Biomed Engn, Washington, DC 20052 USA
关键词
cardiac ablation monitoring; flexible thermal sensors; lesion transmurality prediction; transmural thermal detection; thermal property detection; RADIOFREQUENCY CATHETER ABLATION; ATRIAL-FIBRILLATION; CONTACT FORCE; THERAPY; TRIAL;
D O I
10.1002/adhm.201500451
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Knowledge of the distributions of temperature in cardiac tissue during and after ablation is important in advancing a basic understanding of this process, and for improving its efficacy in treating arrhythmias. Technologies that enable real-time temperature detection and thermal characterization in the transmural direction can help to predict the depths and sizes of lesion that form. Herein, materials and designs for an injectable device platform that supports precision sensors of temperature and thermal transport properties distributed along the length of an ultrathin and flexible needle-type polymer substrate are introduced. The resulting system can insert into the myocardial tissue, in a minimally invasive manner, to monitor both radiofrequency ablation and cryoablation, in a manner that has no measurable effects on the natural mechanical motions of the heart. The measurement results exhibit excellent agreement with thermal simulations, thereby providing improved insights into lesion transmurality.
引用
收藏
页码:373 / 381
页数:9
相关论文
共 50 条
  • [1] Low temperature thermal conductivity, heat capacity, and heat generation of PZT
    Yarlagadda, S
    Chan, MHW
    Lee, H
    Lesieutre, GA
    Jensen, DW
    Messer, RS
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 1995, 6 (06) : 757 - 764
  • [2] Influence of Temperature on the Thermal Properties of the Core Material - the Coefficient of Temperature Conductivity, Specific Heat Capacity, and Thermal Conductivity
    Burlutsky, Efim
    Balzamov, Denis
    Bronskaya, Veronika
    Bashkirov, Dmitriy
    Kharitonova, Olga
    Khairullina, Liliya
    Solovyeva, Olga
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2023, 14 (02) : 443 - 454
  • [3] Simultaneous estimations of temperature-dependent thermal conductivity and heat capacity
    Chen, HT
    Lin, JY
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1998, 41 (14) : 2237 - 2244
  • [4] Special Heat Capacity and Thermal Conductivity
    Schoff, Clifford K.
    JCT COATINGSTECH, 2010, 7 (05) : 48 - 48
  • [5] Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks
    S. Q. Miao
    H. P. Li
    G. Chen
    Journal of Thermal Analysis and Calorimetry, 2014, 115 : 1057 - 1063
  • [6] Thermal conductivity, heat capacity and thermal expansion of ettringite and metaettringite: Effects of the relative humidity and temperature
    Honorio, Tulio
    CEMENT AND CONCRETE RESEARCH, 2022, 159
  • [7] Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks
    Miao, S. Q.
    Li, H. P.
    Chen, G.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 115 (02) : 1057 - 1063
  • [8] THERMAL CONDUCTIVITY AND HEAT CAPACITY OF URANUIM COMPOUNDS
    MOSER, JB
    KRUGER, OL
    AMERICAN CERAMIC SOCIETY BULLETIN, 1966, 45 (04): : 449 - &
  • [9] THERMAL CONDUCTIVITY AND HEAT CAPACITY OF CNT IONANOFLUIDS
    Nieto de Castro, C. A.
    Sohel Murshed, S. M.
    Lourenco, M. J. V.
    Santos, F. J. V.
    Matos Lopes, M. L.
    Franca, J. M. P.
    TMNN-2010 - PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON THERMAL AND MATERIALS NANOSCIENCE AND NANOTECHNOLOGY, 2011,
  • [10] Heat capacity, electrical and thermal conductivity of silicene
    Feyzi, Azra
    Chegel, Raad
    EUROPEAN PHYSICAL JOURNAL B, 2016, 89 (09):