Ultrathin Injectable Sensors of Temperature, Thermal Conductivity, and Heat Capacity for Cardiac Ablation Monitoring

被引:49
|
作者
Koh, Ahyeon [1 ]
Gutbrod, Sarah R. [2 ]
Meyers, Jason D. [2 ]
Lu, Chaofeng [3 ,4 ,5 ]
Webb, Richard Chad [1 ]
Shin, Gunchul [1 ]
Li, Yuhang [6 ]
Kang, Seung-Kyun [1 ]
Huang, Yonggang [5 ]
Efimov, Igor R. [2 ,7 ]
Rogers, John A. [1 ]
机构
[1] Univ Illinois, Frederick Seitz Mat Res Lab, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[2] Washington Univ, Dept Biomed Engn, St Louis, MO 63130 USA
[3] Zhejiang Univ, Dept Civil Engn, Hangzhou 310058, Zhejiang, Peoples R China
[4] Zhejiang Univ, Soft Matter Res Ctr, Hangzhou 310058, Zhejiang, Peoples R China
[5] Northwestern Univ, Dept Mech Engn & Civil & Environm Engn, Evanston, IL 60208 USA
[6] Beihang Univ, Inst Solid Mech, Beijing 100191, Peoples R China
[7] George Washington Univ, Dept Biomed Engn, Washington, DC 20052 USA
关键词
cardiac ablation monitoring; flexible thermal sensors; lesion transmurality prediction; transmural thermal detection; thermal property detection; RADIOFREQUENCY CATHETER ABLATION; ATRIAL-FIBRILLATION; CONTACT FORCE; THERAPY; TRIAL;
D O I
10.1002/adhm.201500451
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Knowledge of the distributions of temperature in cardiac tissue during and after ablation is important in advancing a basic understanding of this process, and for improving its efficacy in treating arrhythmias. Technologies that enable real-time temperature detection and thermal characterization in the transmural direction can help to predict the depths and sizes of lesion that form. Herein, materials and designs for an injectable device platform that supports precision sensors of temperature and thermal transport properties distributed along the length of an ultrathin and flexible needle-type polymer substrate are introduced. The resulting system can insert into the myocardial tissue, in a minimally invasive manner, to monitor both radiofrequency ablation and cryoablation, in a manner that has no measurable effects on the natural mechanical motions of the heart. The measurement results exhibit excellent agreement with thermal simulations, thereby providing improved insights into lesion transmurality.
引用
收藏
页码:373 / 381
页数:9
相关论文
共 50 条
  • [21] The thermal conductivity, thermal diffusivity, and heat capacity of gaseous argon
    Sun, L
    Venart, JES
    Prasad, RC
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2002, 23 (02) : 357 - 389
  • [22] Heat Transfer Analysis of Micromachined Thermal Conductivity Sensors
    Beigelbeck, Roman
    Kohl, Franz
    Kuntner, Jochen
    Jakoby, Bernhard
    ETFA 2005: 10TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, VOL 2, PROCEEDINGS, 2005,
  • [23] Simultaneous measurement of heat capacity, thermal conductivity, and thermal diffusivity
    Poessnecker, W
    Gross, U
    HIGH TEMPERATURES-HIGH PRESSURES, 2002, 34 (01) : 1 - 8
  • [24] Fully Printed Sensors for In Situ Temperature, Heat Flow, and Thermal Conductivity Measurements in Flexible Devices
    Le Goupil, Florian
    Payrot, Guillaume
    Khiev, Sokha
    Smaal, Wiljan
    Hadziioannou, Georges
    ACS OMEGA, 2023, : 8481 - 8487
  • [25] Thermal conductivity and heat capacity of ABS resin composites
    Tsukuda, R
    Sumimoto, S
    Ozawa, T
    JOURNAL OF APPLIED POLYMER SCIENCE, 1997, 63 (10) : 1279 - 1286
  • [26] Thermal conductivity and heat capacity of LuMgCu4
    Golubkov, A. V.
    Parfen'eva, L. S.
    Smirnov, I. A.
    Misiorek, H.
    Wlosewicz, D.
    Mucha, J.
    Jezowski, A.
    PHYSICS OF THE SOLID STATE, 2008, 50 (01) : 1 - 5
  • [27] THERMAL CONDUCTIVITY AND HEAT CAPACITY OF MONOPHOSPHIDE AND MONOSULFIDE OF PLUTONIUM
    MOSER, JB
    KRUGER, OL
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1968, 51 (07) : 369 - &
  • [28] Thermal conductivity and heat capacity of LuMgCu4
    A. V. Golubkov
    L. S. Parfen’eva
    I. A. Smirnov
    H. Misiorek
    D. Wlosewicz
    J. Mucha
    A. Jezowski
    Physics of the Solid State, 2008, 50 : 1 - 5
  • [29] Thermal Conductivity and Heat Capacity Measurement of Biological Tissues
    Hrozek, J.
    Nespor, D.
    Bartusek, K.
    PIERS 2013 STOCKHOLM: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2013, : 1681 - 1683
  • [30] Density, Thermal Expansion, Enthalpy, Heat Capacity, and Thermal Conductivity of Calcium in the Temperature Range 720–1290 K
    R. N. Abdullaev
    R. A. Khairulin
    A. Sh. Agazhanov
    A. R. Khairulin
    Yu. M. Kozlovskii
    D. A. Samoshkin
    Russian Journal of Inorganic Chemistry, 2023, 68 : 125 - 132