Fault diagnosis of multi-channel data by the CNN with the multilinear principal component analysis

被引:46
|
作者
Guo, Yiming [1 ]
Zhou, Yifan [1 ]
Zhang, Zhisheng [1 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-channel data; CNN; Multilinear principal component analysis; Fault diagnosis;
D O I
10.1016/j.measurement.2020.108513
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The multi-channel sensor data are widely collected during a manufacturing process to detect the variation of product quality. Multi-channel data can provide comprehensive information for the fault diagnosis, while the cross-correlation and redundant information in the data make it difficult to analyze using common methods. In this paper, the tensor structure and characteristics of a multi-channel dataset are investigated. After that, a novel fault diagnosis method is proposed by introducing the multilinear subspace learning algorithm into deep learning technologies. The dimension of the multi-channel data is reduced using the Multilinear Principal Component Analysis that does not destroy the tensor structure. The CNN is then used to extract features and build a classification model for fault diagnosis. The proposed method is compared with existing methods in the case study about a practical multi-operation forging process. Results show that the proposed fault diagnosis method for multi-channel data has superior performance and lower computational cost than existing approaches.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Structure aware noise reduction of multi-channel ground penetrating radar data using Principal Component Analysis
    Linford, Neil
    ADVANCES IN ON- AND OFFSHORE ARCHAEOLOGICAL PROSPECTION: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON ARCHAEOLOGICAL PROSPECTION, 2023, : 427 - 429
  • [12] Multi-channel data fusion and intelligent fault diagnosis based on deep learning
    Guo, Yiming
    Hu, Tao
    Zhou, Yifan
    Zhao, Kunkun
    Zhang, Zhisheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (01)
  • [13] Multi-channel Raman Spectral Reconstruction Based on Gaussian Kernel Principal Component Analysis
    Wang Xin
    Kang Zhe-ming
    Liu Long
    Fan Xian-guang
    ACTA PHOTONICA SINICA, 2020, 49 (03)
  • [14] Robust Multilinear Principal Component Analysis
    Inoue, Kohei
    Hara, Kenji
    Urahama, Kiichi
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 591 - 597
  • [15] Multilinear Sparse Principal Component Analysis
    Lai, Zhihui
    Xu, Yong
    Chen, Qingcai
    Yang, Jian
    Zhang, David
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1942 - 1950
  • [16] Online multilinear principal component analysis
    Han, Le
    Wu, Zhen
    Zeng, Kui
    Yang, Xiaowei
    NEUROCOMPUTING, 2018, 275 : 888 - 896
  • [17] Multilinear robust principal component analysis
    Shi, Jia-Rong
    Zhou, Shui-Sheng
    Zheng, Xiu-Yun
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1480 - 1486
  • [18] Fault Detection of Wind Turbine Blades Using Multi-Channel CNN
    Wang, Meng-Hui
    Lu, Shiue-Der
    Hsieh, Cheng-Che
    Hung, Chun-Chun
    SUSTAINABILITY, 2022, 14 (03)
  • [19] Data-driven based Fault Diagnosis using Principal Component Analysis
    Shaikh, Shakir M.
    Halepoto, Imtiaz A.
    Phulpoto, Nazar H.
    Memon, Muhammad S.
    Hussain, Ayaz
    Laghari, Asif A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (07) : 175 - 180
  • [20] Principal-component analysis of multiscale data for process monitoring and fault diagnosis
    Yoon, S
    MacGregor, JF
    AICHE JOURNAL, 2004, 50 (11) : 2891 - 2903