Online multilinear principal component analysis

被引:17
|
作者
Han, Le [1 ]
Wu, Zhen [1 ]
Zeng, Kui [1 ]
Yang, Xiaowei [2 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Software Engn, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Online; Multilinear principal component analysis; Dimension reduction; DIMENSIONALITY REDUCTION; DISCRIMINANT-ANALYSIS; HUMAN MOVEMENT; TENSOR RANK; REPRESENTATION; RECOGNITION; PROJECTIONS;
D O I
10.1016/j.neucom.2017.08.070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, the problem of extracting tensor object feature is studied and a very elegant solution, multilinear principal component analysis (MPCA), is proposed, which is motivated as a tool for tensor object dimension reduction and feature extraction by operating directly on the original tensor data. However, the original MPCA is an offline learning method and not suitable for processing online data since it generates the best projection matrices by learning on the whole training data set at once. In this study, we propose an online multilinear principal component analysis (OMPCA) algorithm and prove that the sequence generated by OMPCA converges to a stationary point of the total tensor scatter maximizing problem. Experiment results of an OMPCA-based support higher-order tensor machine for classification, show that OMPCA significantly lowers the time of dimension reduction with little sacrifice of recognition accuracy. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:888 / 896
页数:9
相关论文
共 50 条
  • [1] Robust Multilinear Principal Component Analysis
    Inoue, Kohei
    Hara, Kenji
    Urahama, Kiichi
    [J]. 2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 591 - 597
  • [2] Multilinear Sparse Principal Component Analysis
    Lai, Zhihui
    Xu, Yong
    Chen, Qingcai
    Yang, Jian
    Zhang, David
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1942 - 1950
  • [3] Multilinear robust principal component analysis
    Shi, Jia-Rong
    Zhou, Shui-Sheng
    Zheng, Xiu-Yun
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1480 - 1486
  • [4] Cosine Multilinear Principal Component Analysis for Recognition
    Han, Feng
    Leng, Chengcai
    Li, Bing
    Basu, Anup
    Jiao, Licheng
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (06) : 1620 - 1630
  • [5] Uncorrelated Multilinear Principal Component Analysis for Unsupervised Multilinear Subspace Learning
    Lu, Haiping
    Plataniotis, Konstantinos N.
    Venetsanopoulos, Anastasios N.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (11): : 1820 - 1836
  • [6] A FAST INCREMENTAL MULTILINEAR PRINCIPAL COMPONENT ANALYSIS ALGORITHM
    Wang, Jin
    Barreto, Armando
    Rishe, Naphtali
    Andrian, Jean
    Adjouadi, Malek
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2011, 7 (10): : 6019 - 6040
  • [7] Multilinear kernel principal component analysis for ear recognition
    Wang, Xiao-Yun
    Liu, Feng-Li
    [J]. DESIGN, MANUFACTURING AND MECHATRONICS (ICDMM 2015), 2016, : 857 - 866
  • [8] The generalized degrees of freedom of multilinear principal component analysis
    Tu, I-Ping
    Huang, Su-Yun
    Hsieh, Dai-Ni
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 173 : 26 - 37
  • [9] MPCA: Multilinear principal component analysis of tensor objects
    Lu, Haiping
    Konstantinos, N. Platardotis
    Venetsanopoulos, Anastasios N.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (01): : 18 - 39
  • [10] Multilinear Principal Component Analysis of tensor objects for recognition
    Lu, Haiping
    Plataniotis, K. N.
    Venetsanopoulos, A. N.
    [J]. 18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 776 - +