Frame wavelets in subspaces of L2(Rd)

被引:39
|
作者
Dai, X [1 ]
Diao, Y
Gu, Q
Han, D
机构
[1] Univ N Carolina, Dept Math, Charlotte, NC 28223 USA
[2] Beijing Univ, Dept Math, Beijing 100871, Peoples R China
[3] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词
normalized tight frame wavelet set; reducing subspace; connectivity;
D O I
10.1090/S0002-9939-02-06498-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a d x d real expansive matrix. We characterize the reducing subspaces of L-2(R-d) for A-dilation and the regular translation operators acting on L-2(R-d). We also characterize the Lebesgue measurable subsets E of R d such that the function defined by inverse Fourier transform of [1/(2pi)(d/2)]chi(E) generates through the same A-dilation and the regular translation operators a normalized tight frame for a given reducing subspace. We prove that in each reducing subspace, the set of all such functions is nonempty and is also path connected in the regular L-2 (R-d)-norm.
引用
收藏
页码:3259 / 3267
页数:9
相关论文
共 50 条
  • [41] Riesz bases in subspaces of L2(R+)
    Goodman, TNT
    Micchelli, CA
    Shen, Z
    [J]. CONSTRUCTIVE APPROXIMATION, 2001, 17 (01) : 39 - 46
  • [42] Translation and dilation invariant subspaces of L2(R)
    Katavolos, A
    Power, SC
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2002, 552 : 101 - 129
  • [43] Riesz Bases in Subspaces of L2 (R+ )
    T. N. T. Goodman
    C. A. Micchelli
    Z. Shen
    [J]. Constructive Approximation, 2001, 17 : 39 - 46
  • [44] SHIFT INVARIANT SUBSPACES OF SLICE L2 FUNCTIONS
    Monguzzi, Alessandro
    Sarfatti, Giulia
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 : 1045 - 1061
  • [45] Subspaces of l2(X) without the approximation property
    Anisca, Razvan
    Chlebovec, Christopher
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (02) : 523 - 530
  • [46] Multipliers, Phases and Connectivity of MRA Wavelets in L2(ℝ2)
    Zhongyan Li
    Xingde Dai
    Yuanan Diao
    Jianguo Xin
    [J]. Journal of Fourier Analysis and Applications, 2010, 16 : 155 - 176
  • [47] Affine synthesis in the space L2 (Rd)
    Terekhin, P. A.
    [J]. IZVESTIYA MATHEMATICS, 2009, 73 (01) : 171 - 180
  • [48] Orthogonal Multiwavelet Frames in L2(Rd)
    Liu Zhanwei
    Hu Guoen
    Wu Guochang
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [49] SUBSPACES OF L2[0,1] IN LP,P]2
    SHAPIRO, HS
    WILLIAMS, J
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (04): : 435 - &
  • [50] CERTAIN INVARIANT SUBSPACES OF H2 AND L2 ON A BIDISC
    NAKAZI, T
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1988, 40 (05): : 1272 - 1280