Riesz bases in subspaces of L2(R+)

被引:5
|
作者
Goodman, TNT [1 ]
Micchelli, CA
Shen, Z
机构
[1] Univ Dundee, Dept Math, Dundee DD1 4HN, Scotland
[2] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
[3] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
关键词
Riesz basis; Gaussian functions; nonnegative translates; Gram-Schmidt orthonormalization;
D O I
10.1007/s003650010019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent investigation [8] concerning the asymptotic behavior of Gram-Schmidt orthonormalization procedure applied to the nonnegative integer shifts of a given function, the problem of determining whether or not such functions form a Riesz system in L-2(R+) arose. In this paper, we provide a sufficient condition to determine whether the nonnegative translates form a Riesz system on L-2(R+). This result is applied to identify a large class of functions for which very general translates enjoy the Riesz basis property in L-2(R+).
引用
收藏
页码:39 / 46
页数:8
相关论文
共 50 条