Sub-Riemannian Geodesics on the 3-D Sphere

被引:12
|
作者
Chang, Der-Chen [1 ]
Markina, Irina [2 ]
Vasil'ev, Alexander [2 ]
机构
[1] Georgetown Univ, Dept Math, Washington, DC 20057 USA
[2] Univ Bergen, Dept Math, N-5008 Bergen, Norway
关键词
Sub-Riemannian geometry; geodesic; Hamiltonian system;
D O I
10.1007/s11785-008-0089-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The unit sphere S(3) can be identified with the unitary group SU(2). Under this identification the unit sphere can be considered as a non-commutative Lie group. The commutation relations for the vector fields of the corresponding Lie algebra de. ne a 2-step sub-Riemannian manifold. We study sub-Riemannian geodesics on this sub-Riemannian manifold making use of the Hamiltonian formalism and solving the corresponding Hamiltonian system.
引用
收藏
页码:361 / 377
页数:17
相关论文
共 50 条
  • [31] Homogeneous Sub-Riemannian Geodesics on a Group of Motions of the Plane
    Sachkov, Yu L.
    [J]. DIFFERENTIAL EQUATIONS, 2021, 57 (11) : 1550 - 1554
  • [32] Geodesics on a Certain Step 2 Sub-Riemannian Manifold
    Ovidiu Calin
    [J]. Annals of Global Analysis and Geometry, 2002, 22 : 317 - 339
  • [33] Abnormal sub-Riemannian geodesics: Morse index and rigidity
    Agrachev, AA
    Sarychev, AV
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (06): : 635 - 690
  • [34] Tracking of Lines in Spherical Images via Sub-Riemannian Geodesics in
    Mashtakov, A.
    Duits, R.
    Sachkov, Yu.
    Bekkers, E. J.
    Beschastnyi, I.
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2017, 58 (02) : 239 - 264
  • [35] Quadratic sufficient minimality conditions for abnormal sub-Riemannian geodesics
    Dmitruk A.V.
    [J]. Journal of Mathematical Sciences, 2001, 104 (1) : 779 - 829
  • [36] On sub-Riemannian geodesics on the Engel groups: Hamilton's equations
    Adams, Malcolm R.
    Tie, Jingzhi
    [J]. MATHEMATISCHE NACHRICHTEN, 2013, 286 (14-15) : 1381 - 1406
  • [37] Sub-Riemannian geodesics and heat operator on odd dimensional spheres
    Molina, Mauricio Godoy
    Markina, Irina
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2012, 2 (02) : 123 - 147
  • [38] Sub-Riemannian Geodesics in the Octonionic H-type Group
    Autenried, Christian
    Godoy Molina, Mauricio
    [J]. ANALYSIS, MODELLING, OPTIMIZATION, AND NUMERICAL TECHNIQUES, 2015, 121 : 113 - 126
  • [39] Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods
    Giambò, R
    [J]. PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 1926 - 1931
  • [40] Sub-Riemannian metrics: Minimality of abnormal geodesics versus subanalyticity
    Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina ul. 8, 117966 Moscow, Russia
    不详
    不详
    [J]. Control Optimisation Calc. Var., 4 (377-403):