A spectral theorem for bilinear compact operators in Hilbert spaces

被引:4
|
作者
da Silva, Eduardo Brandani [1 ]
Fernandez, Dicesar L. [2 ]
de Andrade Neves, Marcus Vinicius [3 ]
机构
[1] Univ Estadual Maringa, Dept Math, Ave Colombo 5790,Campus Univ, BR-87020900 Maringa, Parana, Brazil
[2] Univ Estadual Campinas, Imecc, Rua Segio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
[3] Univ Fed Mato Grosso, Dept Math, Av Estudantes 5055, BR-78735901 Rondonopolis, MT, Brazil
基金
巴西圣保罗研究基金会;
关键词
Eigenvalue; Bilinear operator; Schur representation; Spectral theorem; Hilbert space;
D O I
10.1007/s43037-020-00119-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Current work defines Schur representation of a bilinear operator T: H x H -> H, where H is a separable Hilbert space. Introducing the concepts of self-adjoint bilinear operators, ordered eigenvalues and eigenvectors, we prove that if T is compact, self-adjoint, and its eigenvalues are ordered, then T has a Schur representation, thus obtaining a spectral theorem for T on real Hilbert spaces. We prove that the hypothesis of the existence of ordered eigenvalues is fundamental.
引用
收藏
页数:36
相关论文
共 50 条