Dark three-soliton for a nonlinear Schrodinger equation in inhomogeneous optical fiber

被引:25
|
作者
Zhao, Jianbo [1 ,2 ]
Luan, Zitong [1 ,2 ]
Zhang, Pei [1 ,2 ]
Dai, Chaoqing [3 ]
Biswas, Anjan [4 ,5 ,6 ]
Liu, Wenjun [1 ,2 ]
Kudryashov, Nikolay A. [6 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, POB 122, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, POB 122, Beijing 100876, Peoples R China
[3] Zhejiang A&F Univ, Sch Sci, Linan 311300, Zhejiang, Peoples R China
[4] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[5] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[6] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Dept Appl Math, 31 Kashirskoe Shosse, Moscow 115409, Russia
来源
OPTIK | 2020年 / 220卷 / 220期
基金
中国国家自然科学基金;
关键词
Nonlinear Schrodinger equation; Dark soliton; Optical fiber; Soliton interactions; HIGHER-ORDER; SOLITON TRANSMISSION; PHASE-SHIFT; DISPERSION; VECTOR; TRANSFORMATION;
D O I
10.1016/j.ijleo.2020.165189
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Dark solitons are widely studied because of their unique characteristics in inhomogeneous optical fibers. A fourth-order nonlinear Schrodinger equation is studied in this paper. Dark soliton solutions are obtained by the Hirota method. With some suitable functions of the variable coefficients, interactions among dark solitons are presented, and their interaction properties are analyzed. Results have some potentially applications in optical fibers and the design of optical switches.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Soliton-like solutions of a derivative nonlinear Schrodinger equation with variable coefficients in inhomogeneous optical fibers
    Li, Min
    Tian, Bo
    Liu, Wen-Jun
    Zhang, Hai-Qiang
    Meng, Xiang-Hua
    Xu, Tao
    NONLINEAR DYNAMICS, 2010, 62 (04) : 919 - 929
  • [32] Dromion-like soliton interactions for nonlinear Schrodinger equation with variable coefficients in inhomogeneous optical fibers
    Liu, Wenjun
    Zhang, Yujia
    Luan, Zitong
    Zhou, Qin
    Mirzazadeh, Mohammad
    Ekici, Mehmet
    Biswas, Anjan
    NONLINEAR DYNAMICS, 2019, 96 (01) : 729 - 736
  • [33] Novel optical soliton solutions for time-fractional resonant nonlinear Schrodinger equation in optical fiber
    Das, N.
    Ray, S. Saha
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (02)
  • [34] Dark Soliton Properties of Nonlinear Schrodinger Equation with (2n
    Zhou Yu
    Zhang Yuan
    Wang Ying
    Zhao Minglin
    Yan Donguang
    ACTA OPTICA SINICA, 2020, 40 (09)
  • [35] An alternative set of bright and dark soliton solutions of the nonlinear Schrodinger equation
    Palacios, SL
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2001, 10 (04) : 403 - 407
  • [36] New bright and dark soliton solutions for a generalized nonlinear Schrodinger equation
    Kader, A. H. Abdel
    Latif, M. S. Abdel
    OPTIK, 2019, 176 : 699 - 703
  • [37] MULTIPLE DARK SOLITON-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION
    BLOW, KJ
    DORAN, NJ
    PHYSICS LETTERS A, 1985, 107 (02) : 55 - 58
  • [38] Stochastic dark solitons for a higher-order nonlinear Schrodinger equation in the optical fiber
    Zhong, Hui
    Tian, Bo
    Li, Min
    Sun, Wen-Rong
    Zhen, Hui-Ling
    JOURNAL OF MODERN OPTICS, 2013, 60 (19) : 1644 - 1651
  • [39] Breather-to-soliton transition for a sixth-order nonlinear Schrodinger equation in an optical fiber
    Huang, Qian-Min
    Gao, Yi-Tian
    Hu, Lei
    APPLIED MATHEMATICS LETTERS, 2018, 75 : 135 - 140
  • [40] Bilinear forms and dark-soliton solutions for a fifth-order variable-coefficient nonlinear Schrodinger equation in an optical fiber
    Zhao, Chen
    Gao, Yi-Tian
    Lan, Zhong-Zhou
    Yang, Jin-Wei
    Su, Chuan-Qi
    MODERN PHYSICS LETTERS B, 2016, 30 (24):