Dark three-soliton for a nonlinear Schrodinger equation in inhomogeneous optical fiber

被引:25
|
作者
Zhao, Jianbo [1 ,2 ]
Luan, Zitong [1 ,2 ]
Zhang, Pei [1 ,2 ]
Dai, Chaoqing [3 ]
Biswas, Anjan [4 ,5 ,6 ]
Liu, Wenjun [1 ,2 ]
Kudryashov, Nikolay A. [6 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, POB 122, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, POB 122, Beijing 100876, Peoples R China
[3] Zhejiang A&F Univ, Sch Sci, Linan 311300, Zhejiang, Peoples R China
[4] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[5] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[6] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Dept Appl Math, 31 Kashirskoe Shosse, Moscow 115409, Russia
来源
OPTIK | 2020年 / 220卷 / 220期
基金
中国国家自然科学基金;
关键词
Nonlinear Schrodinger equation; Dark soliton; Optical fiber; Soliton interactions; HIGHER-ORDER; SOLITON TRANSMISSION; PHASE-SHIFT; DISPERSION; VECTOR; TRANSFORMATION;
D O I
10.1016/j.ijleo.2020.165189
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Dark solitons are widely studied because of their unique characteristics in inhomogeneous optical fibers. A fourth-order nonlinear Schrodinger equation is studied in this paper. Dark soliton solutions are obtained by the Hirota method. With some suitable functions of the variable coefficients, interactions among dark solitons are presented, and their interaction properties are analyzed. Results have some potentially applications in optical fibers and the design of optical switches.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Exact spatiotemporal soliton solutions to the generalized three-dimensional nonlinear Schrodinger equation in optical fiber communication
    Wang, Xiaoli
    Yang, Jie
    ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 13
  • [22] Two-dimensional dark soliton in the nonlinear Schrodinger equation
    Sakaguchi, Hidetsugu
    Higashiuchi, Tomoko
    PHYSICS LETTERS A, 2006, 359 (06) : 647 - 651
  • [23] EXACT DARK SOLITON SOLUTION OF THE GENERALIZED NONLINEAR SCHRODINGER EQUATION
    Zhang, Yi
    Cai, Xiao-Na
    Yao, Cai-Zhen
    Xu, Hong-Xian
    MODERN PHYSICS LETTERS B, 2009, 23 (24): : 2869 - 2888
  • [24] Exact bright soliton solution for a family of coupled higher-order nonlinear Schrodinger equation in inhomogeneous optical fiber media
    Tian, J.
    Zhou, G.
    EUROPEAN PHYSICAL JOURNAL D, 2007, 41 (01): : 171 - 177
  • [25] Two-soliton and three-soliton molecules in optical fibers
    Rohrmann, P.
    Hause, A.
    Mitschke, F.
    PHYSICAL REVIEW A, 2013, 87 (04)
  • [26] Numerical solutions of a variable-coefficient nonlinear Schrodinger equation for an inhomogeneous optical fiber
    Yin, Hui-Min
    Tian, Bo
    Chai, Jun
    Liu, Lei
    Sun, Yan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (08) : 1827 - 1836
  • [27] Soliton solutions of fractional extended nonlinear Schrodinger equation arising in plasma physics and nonlinear optical fiber
    Ahmad, Jamshad
    Akram, Sonia
    Noor, Kanza
    Nadeem, Muhammad
    Bucur, Amelia
    Alsayaad, Yahya
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [28] Anti-dark solitons for a variable-coefficient higher-order nonlinear Schrodinger equation in an inhomogeneous optical fiber
    Feng, Yu-Jie
    Gao, Yi-Tian
    Sun, Zhi-Yuan
    Zuo, Da-Wei
    Shen, Yu-Jia
    Sun, Yu-Hao
    Xue, Long
    Yu, Xin
    PHYSICA SCRIPTA, 2015, 90 (04)
  • [29] Binary Darboux transformation and multi-dark solitons for a higher-order nonlinear Schrodinger equation in the inhomogeneous optical fiber
    Yang, Chong
    Xie, Xi-Yang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2020, 72 (12)
  • [30] Soliton solutions in the modified nonlinear Schrodinger equation in inhomogeneous optical fibers and non-uniform proteins
    Zhu, Xi
    Peng, Xu-Yang
    OPTIK, 2019, 192