A modified multiscale finite element method for nonlinear flow in reservoirs

被引:4
|
作者
Zhang, Na [1 ]
Yao, Jun [1 ]
Xue, ShiFeng [1 ]
机构
[1] China Univ Petr East China, Qingdao 266580, Shandong, Peoples R China
基金
中国博士后科学基金;
关键词
Multiscale; Finite element; Nonlinear; Flow; Numerical simulation; ELLIPTIC PROBLEMS; PERCOLATION; SIMULATION; EQUATION; MEDIA;
D O I
10.1016/j.petrol.2015.11.003
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper we propose a modified multiscale finite element method for nonlinear flow simulations in heterogeneous porous media. The main idea of the method is to use the global fine scale solution to determine the boundary conditions of the multiscale basis functions. When solving the time-dependent problems, the equations of standard MsFEM need to be solved many times for different pressure profiles. Then, we propose an adaptive criterion to determine if the basis functions need to be updated. The accuracy and the robustness of the modified MsFEM are shown through several examples. In the first two examples, we consider single phase flow in consideration of pressure sensitivity and unsaturated flow, and then compare the results solved by the finite element method. The results show that the multiscale method is accurate and robust, while using significantly less CPU time than finite element method. Then, we use the modified MsFEM to compute two phase flow in low permeability reservoirs. The results show that the greater the staring pressure gradient is, the greater the pressure drop is, and the greater the staring pressure gradient is, the smaller the swept area is. All the results indicate that modified the MsFEM offers a promising path towards direct simulation of nonl-linear flows in porous media. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 50 条
  • [41] Convergence of a nonconforming multiscale finite element method
    Efendiev, YR
    Hou, TY
    Wu, XH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) : 888 - 910
  • [42] Variational eigenstrain multiscale finite element method
    Li, SF
    Gupta, A
    Liu, XH
    Mahyari, M
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (17-20) : 1803 - 1824
  • [43] A multiscale finite element method for the Helmholtz equation
    Oberai, AA
    Pinsky, PM
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 154 (3-4) : 281 - 297
  • [44] A hybrid multiscale finite element/peridynamics method
    Raymond A. Wildman
    James T. O’Grady
    George A. Gazonas
    International Journal of Fracture, 2017, 207 : 41 - 53
  • [45] Exponentially Convergent Multiscale Finite Element Method
    Chen, Yifan
    Hou, Thomas Y.
    Wang, Yixuan
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024, 6 (02) : 862 - 878
  • [46] Meshfree Generalized Multiscale Finite Element Method
    Nikiforov, Djulustan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [47] Multiscale Finite Element Method for Ventilation Panels
    Leumuller, M.
    Hollaus, K.
    IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (09)
  • [48] Multiscale finite element method for numerical homogenization
    Allaire, G
    Brizzi, R
    MULTISCALE MODELING & SIMULATION, 2005, 4 (03): : 790 - 812
  • [49] A hybrid multiscale finite element/peridynamics method
    Wildman, Raymond A.
    O'Grady, James T.
    Gazonas, George A.
    INTERNATIONAL JOURNAL OF FRACTURE, 2017, 207 (01) : 41 - 53
  • [50] A multiscale mortar mixed finite element method
    Arbogast, Todd
    Pencheva, Gergina
    Wheeler, Mary F.
    Yotov, Ivan
    MULTISCALE MODELING & SIMULATION, 2007, 6 (01): : 319 - 346