A modified multiscale finite element method for nonlinear flow in reservoirs

被引:4
|
作者
Zhang, Na [1 ]
Yao, Jun [1 ]
Xue, ShiFeng [1 ]
机构
[1] China Univ Petr East China, Qingdao 266580, Shandong, Peoples R China
基金
中国博士后科学基金;
关键词
Multiscale; Finite element; Nonlinear; Flow; Numerical simulation; ELLIPTIC PROBLEMS; PERCOLATION; SIMULATION; EQUATION; MEDIA;
D O I
10.1016/j.petrol.2015.11.003
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper we propose a modified multiscale finite element method for nonlinear flow simulations in heterogeneous porous media. The main idea of the method is to use the global fine scale solution to determine the boundary conditions of the multiscale basis functions. When solving the time-dependent problems, the equations of standard MsFEM need to be solved many times for different pressure profiles. Then, we propose an adaptive criterion to determine if the basis functions need to be updated. The accuracy and the robustness of the modified MsFEM are shown through several examples. In the first two examples, we consider single phase flow in consideration of pressure sensitivity and unsaturated flow, and then compare the results solved by the finite element method. The results show that the multiscale method is accurate and robust, while using significantly less CPU time than finite element method. Then, we use the modified MsFEM to compute two phase flow in low permeability reservoirs. The results show that the greater the staring pressure gradient is, the greater the pressure drop is, and the greater the staring pressure gradient is, the smaller the swept area is. All the results indicate that modified the MsFEM offers a promising path towards direct simulation of nonl-linear flows in porous media. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 50 条
  • [21] AN ADAPTIVE MULTISCALE FINITE ELEMENT METHOD
    Henning, Patrick
    Ohlberger, Mario
    Schweizer, Ben
    MULTISCALE MODELING & SIMULATION, 2014, 12 (03): : 1078 - 1107
  • [22] Multiscale finite-element method
    Rank, E.
    Krause, R.
    Computers and Structures, 1997, 64 (1-4): : 139 - 144
  • [23] Numerical analysis of a modified finite element nonlinear Galerkin method
    He, YN
    Miao, HL
    Mattheij, RMM
    Chen, ZX
    NUMERISCHE MATHEMATIK, 2004, 97 (04) : 725 - 756
  • [24] Numerical analysis of a modified finite element nonlinear Galerkin method
    Yinnian He
    Huanling Miao
    R.M.M. Mattheij
    Zhangxin Chen
    Numerische Mathematik, 2004, 97 : 725 - 756
  • [25] High dimensional finite element method for multiscale nonlinear monotone parabolic equations
    Tan, Wee Chin
    Viet Ha Hoang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 345 (471-500) : 471 - 500
  • [26] FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR NONLINEAR MONOTONE PARABOLIC HOMOGENIZATION PROBLEMS
    Abdulle, Assyr
    Huber, Martin E.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1659 - 1697
  • [27] A generalized multiscale finite element method for poroelasticity problems II: Nonlinear coupling
    Brown, Donald L.
    Vasilyeva, Maria
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 297 : 132 - 146
  • [28] Generalized Multiscale Finite Element Method for Multicontinuum Coupled Flow and Transport Model
    D. A. Ammosov
    J. Huang
    W. T. Leung
    B. Shan
    Lobachevskii Journal of Mathematics, 2024, 45 (11) : 5343 - 5356
  • [29] Application of the multiscale finite element method to groundwater flow in heterogeneous porous media
    Ye, SJ
    Xue, YQ
    Wu, JC
    Xie, CH
    Computational Methods in Water Resources, Vols 1 and 2, 2004, 55 : 337 - 348
  • [30] AN ADAPTIVE FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR STOKES FLOW IN POROUS MEDIA
    Abdulle, A.
    Budac, O.
    MULTISCALE MODELING & SIMULATION, 2015, 13 (01): : 256 - 290