Tests for the variance parameter in the Fay-Herriot model

被引:2
|
作者
Marhuenda, Y. [1 ]
Morales, D. [1 ]
Pardo, M. C. [2 ]
机构
[1] Univ Miguel Hernandez Elche, Ctr Invest Operat, Elche, Spain
[2] Univ Complutense Madrid, Dept Estadist & Invest Operat 1, Madrid, Spain
关键词
Fay-Herriot model; small area estimation; zero variance component; likelihood ratio test; Monte Carlo simulation; LIKELIHOOD RATIO TESTS; SMALL-AREA ESTIMATION; REGRESSION;
D O I
10.1080/02331888.2015.1016026
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Fay-Herriot model is a linear mixed model that plays a relevant role in small area estimation (SAE). Under the SAE set-up, tools for selecting an adequate model are required. Applied statisticians are often interested on deciding if it is worthwhile to use a mixed effect model instead of a simpler fixed-effect model. This problem is not standard because under the null hypothesis the random effect variance is on the boundary of the parameter space. The likelihood ratio test and the residual likelihood ratio test are proposed and their finite sample distributions are derived. Finally, we analyse their behaviour under simulated scenarios and we also apply them to real data.
引用
收藏
页码:27 / 42
页数:16
相关论文
共 50 条
  • [41] A Generalised Semiparametric Bayesian Fay-Herriot Model for Small Area Estimation Shrinking Both Means and Variances
    Polettini, Silvia
    [J]. BAYESIAN ANALYSIS, 2017, 12 (03): : 729 - 752
  • [42] msae: An R Package of Multivariate Fay-Herriot Models for Small Area Estimation
    Permatasari, Novia
    Ubaidillah, Azka
    [J]. R JOURNAL, 2021, 13 (02): : 111 - 122
  • [43] Robust estimation of mean squared error matrix of small area estimators in a multivariate Fay-Herriot model
    Ito, Tsubasa
    Kubokawa, Tatsuya
    [J]. JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2020, 3 (01) : 39 - 61
  • [44] 基于混合地理加权Fay-Herriot模型的小域估计
    李腾
    魏传华
    于力超
    [J]. 应用数学, 2019, 32 (02) : 339 - 348
  • [45] Small-area estimation based on survey data from a left-censored Fay-Herriot model
    Slud, Eric V.
    Maiti, Tapabrata
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (11) : 3520 - 3535
  • [46] SMALL AREA ESTIMATION VIA MULTIVARIATE FAY-HERRIOT MODELS WITH LATENT SPATIAL DEPENDENCE
    Porter, Aaron T.
    Wikle, Christopher K.
    Holan, Scott H.
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2015, 57 (01) : 15 - 29
  • [47] The best EBLUP in the Fay–Herriot model
    Jiming Jiang
    En-Tzu Tang
    [J]. Annals of the Institute of Statistical Mathematics, 2011, 63 : 1123 - 1140
  • [48] Comparison of mean squared error estimators under the Fay-Herriot model: application to poverty and percentage of food expenditure data
    Shiferaw, Yegnanew A.
    Galpin, Jacqueline S.
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (01): : 439 - 457
  • [49] Small area estimation under Fay-Herriot models with non-parametric estimation of heteroscedasticity
    Gonzalez-Manteiga, W.
    Lombardia, M. J.
    Molina, I.
    Morales, D.
    Santamaria, L.
    [J]. STATISTICAL MODELLING, 2010, 10 (02) : 215 - 239
  • [50] Multivariate Fay-Herriot Bayesian estimation of small area means under functional measurement error
    Arima, Serena
    Bell, William R.
    Datta, Gauri S.
    Franco, Carolina
    Liseo, Brunero
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2017, 180 (04) : 1191 - 1209