American Community Survey;
Bayesian;
conditional autoregressive model;
GMCAR;
hierarchical model;
multivariate statistics;
survey methodology;
MORTALITY-RATES;
CAR;
D O I:
10.1111/anzs.12101
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
The Fay-Herriot model is a standard model for direct survey estimators in which the true quantity of interest, the superpopulation mean, is latent and its estimation is improved through the use of auxiliary covariates. In the context of small area estimation, these estimates can be further improved by borrowing strength across spatial regions or by considering multiple outcomes simultaneously. We provide here two formulations to perform small area estimation with Fay-Herriot models that include both multivariate outcomes and latent spatial dependence. We consider two model formulations. In one of these formulations the outcome-by-space dependence structure is separable. The other accounts for the cross dependence through the use of a generalized multivariate conditional autoregressive (GMCAR) structure. The GMCAR model is shown, in a state-level example, to produce smaller mean square prediction errors, relative to equivalent census variables, than the separable model and the state-of-the-art multivariate model with unstructured dependence between outcomes and no spatial dependence. In addition, both the GMCAR and the separable models give smaller mean squared prediction error than the state-of-the-art model when conducting small area estimation on county level data from the American Community Survey.
机构:
Univ Missouri, Dept Stat, Columbia, MO 65211 USAUniv Missouri, Dept Stat, Columbia, MO 65211 USA
Porter, Aaron T.
Holan, Scott H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Missouri, Dept Stat, Columbia, MO 65211 USAUniv Missouri, Dept Stat, Columbia, MO 65211 USA
Holan, Scott H.
Wikle, Christopher K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Missouri, Dept Stat, Columbia, MO 65211 USAUniv Missouri, Dept Stat, Columbia, MO 65211 USA
Wikle, Christopher K.
Cressie, Noel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Missouri, Dept Stat, Columbia, MO 65211 USA
Univ Wollongong, Sch Math & Appl Stat, Natl Inst Appl Stat Res Australia NIASRA, Wollongong, NSW 2522, AustraliaUniv Missouri, Dept Stat, Columbia, MO 65211 USA
机构:
Univ Santiago de Compostela, Dept Estad & Invest Operat, Santiago De Compostela 15706, SpainUniv Santiago de Compostela, Dept Estad & Invest Operat, Santiago De Compostela 15706, Spain
Gonzalez-Manteiga, W.
Lombardia, M. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ A Coruna, Dept Matemat, La Coruna, SpainUniv Santiago de Compostela, Dept Estad & Invest Operat, Santiago De Compostela 15706, Spain
Lombardia, M. J.
Molina, I.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Dept Estad, E-28903 Getafe, SpainUniv Santiago de Compostela, Dept Estad & Invest Operat, Santiago De Compostela 15706, Spain
Molina, I.
Morales, D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Miguel Hernandez Elche, Ctr Invest Operat, Elche, SpainUniv Santiago de Compostela, Dept Estad & Invest Operat, Santiago De Compostela 15706, Spain
Morales, D.
Santamaria, L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Miguel Hernandez Elche, Ctr Invest Operat, Elche, SpainUniv Santiago de Compostela, Dept Estad & Invest Operat, Santiago De Compostela 15706, Spain