Functional partially linear quantile regression model

被引:65
|
作者
Lu, Ying [1 ]
Du, Jiang [2 ]
Sun, Zhimeng [3 ]
机构
[1] Commun Univ China, Coll Appl Sci, Beijing 100024, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[3] Cent Univ Finance & Econ, Sch Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Functional linear regression; Quantile regression; Asymptotic normality; CONVERGENCE; RATES;
D O I
10.1007/s00184-013-0439-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers estimation of a functional partially quantile regression model whose parameters include the infinite dimensional function as well as the slope parameters. We show asymptotical normality of the estimator of the finite dimensional parameter, and derive the rate of convergence of the estimator of the infinite dimensional slope function. In addition, we show the rate of the mean squared prediction error for the proposed estimator. A simulation study is provided to illustrate the numerical performance of the resulting estimators.
引用
收藏
页码:317 / 332
页数:16
相关论文
共 50 条
  • [1] Functional partially linear quantile regression model
    Ying Lu
    Jiang Du
    Zhimeng Sun
    [J]. Metrika, 2014, 77 : 317 - 332
  • [2] PARTIALLY FUNCTIONAL LINEAR QUANTILE REGRESSION WITH MEASUREMENT ERRORS
    Zhang, Mengli
    Xue, Lan
    Tekwe, Carmen D.
    Bai, Yang
    Qu, Annie
    [J]. STATISTICA SINICA, 2023, 33 (03) : 2257 - 2280
  • [3] Estimation in Partially Observed Functional Linear Quantile Regression
    XIAO Juxia
    XIE Tianfa
    ZHANG Zhongzhan
    [J]. Journal of Systems Science & Complexity, 2022, 35 (01) : 313 - 341
  • [4] Estimation in Partially Observed Functional Linear Quantile Regression
    Juxia Xiao
    Tianfa Xie
    Zhongzhan Zhang
    [J]. Journal of Systems Science and Complexity, 2022, 35 : 313 - 341
  • [5] Estimation in Partially Observed Functional Linear Quantile Regression
    Xiao Juxia
    Xie Tianfa
    Zhang Zhongzhan
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2022, 35 (01) : 313 - 341
  • [6] Quantile regression for functional partially linear model in ultra-high dimensions
    Ma, Haiqiang
    Li, Ting
    Zhu, Hongtu
    Zhu, Zhongyi
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 129 : 135 - 147
  • [7] Single-index partially functional linear quantile regression
    Jiang, Zhiqiang
    Huang, Zhensheng
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (05) : 1838 - 1850
  • [8] Partially functional linear quantile regression model and variable selection with censoring indicators MAR
    Wu, Chengxin
    Ling, Nengxiang
    Vieu, Philippe
    Liang, Wenjuan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 197
  • [9] Composite quantile estimation in partially functional linear regression model with randomly censored responses
    Wu, Chengxin
    Ling, Nengxiang
    Vieu, Philippe
    Fan, Guoliang
    [J]. TEST, 2024,
  • [10] Quantile regression in functional linear semiparametric model
    Tang Qingguo
    Kong, Linglong
    [J]. STATISTICS, 2017, 51 (06) : 1342 - 1358