Quantile regression for functional partially linear model in ultra-high dimensions

被引:40
|
作者
Ma, Haiqiang [1 ,2 ]
Li, Ting [3 ]
Zhu, Hongtu [4 ]
Zhu, Zhongyi [3 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Stat, Nanchang 330013, Jiangxi, Peoples R China
[2] Jiangxi Univ Finance & Econ, Res Ctr Appl Stat, Nanchang 330013, Jiangxi, Peoples R China
[3] Fudan Univ, Dept Stat, Shanghai 200433, Peoples R China
[4] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27515 USA
基金
中国国家自然科学基金;
关键词
Asymptotic property; Double penalized quantile method; Functional partially linear quantile model; Functional principal component analysis; Variable selection; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION;
D O I
10.1016/j.csda.2018.06.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Quantile regression for functional partially linear model in ultra-high dimensions is proposed and studied. By focusing on the conditional quantiles, where conditioning is on both multiple random processes and high-dimensional scalar covariates, the proposed model can lead to a comprehensive description of the scalar response. To select and estimate important variables, a double penalized functional quantile objective function with two nonconvex penalties is developed, and the optimal tuning parameters involved can be chosen by a two-step technique. Based on the difference convex analysis (DCA), the asymptotic properties of the resulting estimators are established, and the convergence rate of the prediction of the conditional quantile function can be obtained. Simulation studies demonstrate a competitive performance against the existing approach. A real application to Alzheimer's Disease Neuroimaging Initiative (ADNI) data is used to illustrate the practicality of the proposed model. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 147
页数:13
相关论文
共 50 条
  • [1] PARTIALLY LINEAR ADDITIVE QUANTILE REGRESSION IN ULTRA-HIGH DIMENSION
    Sherwood, Ben
    Wang, Lan
    [J]. ANNALS OF STATISTICS, 2016, 44 (01): : 288 - 317
  • [2] Smoothed quantile regression for partially functional linear models in high dimensions
    Wang, Zhihao
    Bai, Yongxin
    Haerdle, Wolfgang K.
    Tian, Maozai
    [J]. BIOMETRICAL JOURNAL, 2023, 65 (07)
  • [3] Functional partially linear quantile regression model
    Ying Lu
    Jiang Du
    Zhimeng Sun
    [J]. Metrika, 2014, 77 : 317 - 332
  • [4] Functional partially linear quantile regression model
    Lu, Ying
    Du, Jiang
    Sun, Zhimeng
    [J]. METRIKA, 2014, 77 (02) : 317 - 332
  • [5] Quantile Regression of Ultra-high Dimensional Partially Linear Varying-coefficient Model with Missing Observations
    Bao Hua WANG
    Han Ying LIANG
    [J]. Acta Mathematica Sinica,English Series, 2023, (09) : 1701 - 1726
  • [6] Quantile Regression of Ultra-high Dimensional Partially Linear Varying-coefficient Model with Missing Observations
    Bao Hua Wang
    Han Ying Liang
    [J]. Acta Mathematica Sinica, English Series, 2023, 39 : 1701 - 1726
  • [7] Quantile Regression of Ultra-high Dimensional Partially Linear Varying-coefficient Model with Missing Observations
    Wang, Bao Hua
    Liang, Han Ying
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (09) : 1701 - 1726
  • [8] Partially functional linear regression in high dimensions
    Kong, Dehan
    Xue, Kaijie
    Yao, Fang
    Zhang, Hao H.
    [J]. BIOMETRIKA, 2016, 103 (01) : 147 - 159
  • [9] Composite quantile regression for ultra-high dimensional semiparametric model averaging
    Guo, Chaohui
    Lv, Jing
    Wu, Jibo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 160
  • [10] PARTIALLY FUNCTIONAL LINEAR QUANTILE REGRESSION WITH MEASUREMENT ERRORS
    Zhang, Mengli
    Xue, Lan
    Tekwe, Carmen D.
    Bai, Yang
    Qu, Annie
    [J]. STATISTICA SINICA, 2023, 33 (03) : 2257 - 2280