ViPR: Visual-Odometry-aided Pose Regression for 6DoF Camera Localization

被引:6
|
作者
Ott, Felix [1 ]
Feigl, Tobias [1 ,2 ]
Loeffler, Christoffer [1 ,2 ]
Mutschler, Christopher [1 ,3 ]
机构
[1] Fraunhofer Inst Integrated Circuits IIS, Nurnberg, Germany
[2] FAU Erlangen Nuremberg, Dept Comp Sci, Erlangen, Germany
[3] Ludwig Maximilians Univ LMU, Dept Stat, Munich, Germany
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020) | 2020年
关键词
AUGMENTED REALITY; EFFICIENT;
D O I
10.1109/CVPRW50498.2020.00029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual Odometry (VO) accumulates a positional drift in long-term robot navigation tasks. Although Convolutional Neural Networks (CNNs) improve VO in various aspects, VO still suffers from moving obstacles, discontinuous observation of features, and poor textures or visual information. While recent approaches estimate a 6DoF pose either directly from (a series of) images or by merging depth maps with optical flow (OF), research that combines absolute pose regression with OF is limited. We propose ViPR, a novel modular architecture for long-term 6DoF VO that leverages temporal information and synergies between absolute pose estimates (from PoseNet-like modules) and relative pose estimates (from FlowNet-based modules) by combining both through recurrent layers. Experiments on known datasets and on our own Industry dataset show that our modular design outperforms state of the art in long-term navigation tasks.
引用
收藏
页码:187 / 198
页数:12
相关论文
共 50 条
  • [31] Accurate 6DOF Pose Tracking for Texture-Less Objects
    Dong, Yanchao
    Ji, Lingling
    Wang, Senbo
    Gong, Pei
    Yue, Jiguang
    Shen, Runjie
    Chen, Ce
    Zhang, Yaping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (05) : 1834 - 1848
  • [32] Exploring Multiple Geometric Representations for 6DoF Object Pose Estimation
    Yang, Xu
    Cai, Junqi
    Li, Kunbo
    Fan, Xiumin
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (10) : 6115 - 6122
  • [33] Ground Plane Polling for 6DoF Pose Estimation of Objects on the Road
    Rangesh, Akshay
    Trivedi, Mohan Manubhai
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2020, 5 (03): : 449 - 460
  • [34] A novel 6DoF pose estimation method using transformer fusion
    Wang, Huafeng
    Zhang, Haodu
    Liu, Wanquan
    Hu, Zhimin
    Gao, Haoqi
    Lv, Weifeng
    Gu, Xianfeng
    PATTERN RECOGNITION, 2025, 162
  • [35] G-ICP SLAM: An Odometry-Free 3D Mapping System with Robust 6DoF Pose Estimation
    Kuramachi, Ryo
    Ohsato, Akihito
    Sasaki, Yoko
    Mizoguchi, Hiroshi
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 176 - 181
  • [36] Robust and Efficient Estimation of Absolute Camera Pose for Monocular Visual Odometry
    Li, Haoang
    Chen, Wen
    Zhao, Ji
    Bazin, Jean-Charles
    Luo, Lei
    Liu, Zhe
    Liu, Yun-Hui
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 2675 - 2681
  • [37] Triangulate geometric constraint combined with visual-flow fusion network for accurate 6DoF pose estimation
    Jiang, Zhihong
    Wang, Xin
    Huang, Xiao
    Li, Hui
    IMAGE AND VISION COMPUTING, 2021, 108
  • [38] Automated Wireless Localization Data Acquisition and Calibration with 6DOF Image Localization
    Fuerst, Jonathan
    Chen, Kaifei
    Solmaz, Gorkan
    Kovacs, Erno
    PROCEEDINGS OF THE 2018 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2018 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS (UBICOMP/ISWC'18 ADJUNCT), 2018, : 1372 - 1381
  • [39] 6DOF Needle Pose Estimation for Robot-Assisted Vitreoretinal Surgery
    Zhou, Mingchuan
    Hao, Xing
    Eslami, Abouzar
    Huang, Kai
    Cai, Caixia
    Lohmann, Chris P.
    Navab, Nassir
    Knoll, Alois
    Nasseri, M. Ali
    IEEE ACCESS, 2019, 7 : 63113 - 63122
  • [40] 6 DoF Pose Regression via Differentiable Rendering
    Simpsi, Andrea
    Roggerini, Marco
    Cannici, Marco
    Matteucci, Matteo
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT II, 2022, 13232 : 645 - 656