ViPR: Visual-Odometry-aided Pose Regression for 6DoF Camera Localization

被引:6
|
作者
Ott, Felix [1 ]
Feigl, Tobias [1 ,2 ]
Loeffler, Christoffer [1 ,2 ]
Mutschler, Christopher [1 ,3 ]
机构
[1] Fraunhofer Inst Integrated Circuits IIS, Nurnberg, Germany
[2] FAU Erlangen Nuremberg, Dept Comp Sci, Erlangen, Germany
[3] Ludwig Maximilians Univ LMU, Dept Stat, Munich, Germany
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020) | 2020年
关键词
AUGMENTED REALITY; EFFICIENT;
D O I
10.1109/CVPRW50498.2020.00029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual Odometry (VO) accumulates a positional drift in long-term robot navigation tasks. Although Convolutional Neural Networks (CNNs) improve VO in various aspects, VO still suffers from moving obstacles, discontinuous observation of features, and poor textures or visual information. While recent approaches estimate a 6DoF pose either directly from (a series of) images or by merging depth maps with optical flow (OF), research that combines absolute pose regression with OF is limited. We propose ViPR, a novel modular architecture for long-term 6DoF VO that leverages temporal information and synergies between absolute pose estimates (from PoseNet-like modules) and relative pose estimates (from FlowNet-based modules) by combining both through recurrent layers. Experiments on known datasets and on our own Industry dataset show that our modular design outperforms state of the art in long-term navigation tasks.
引用
收藏
页码:187 / 198
页数:12
相关论文
共 50 条
  • [21] Unsupervised Domain Adaptation for 6DOF Indoor Localization
    Di Mauro, Daniele
    Furnari, Antonino
    Signorello, Giovanni
    Farinella, Giovanni
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 954 - 961
  • [22] Unsupervised monocular visual odometry with decoupled camera pose estimation
    Lin, Lili
    Wang, Weisheng
    Luo, Wan
    Song, Lesheng
    Zhou, Wenhui
    DIGITAL SIGNAL PROCESSING, 2021, 114
  • [23] Real-time Onboard 6DoF Localization of an Indoor MAV in Degraded Visual Environments Using a RGB-D Camera
    Fang, Zheng
    Scherer, Sebastian
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 5253 - 5259
  • [24] 6DOF Pose Estimation using 3D Sensors
    Verzijlenberg, Bart
    Jenkin, Michael
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [25] Using a RGB-D camera for 6DoF SLAM
    Munoz, Jose
    Pastor, Daniel
    Gil, Pablo
    Puente, Santiago
    Cazorla, Miguel
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2012, 248 : 143 - +
  • [26] Particle Filtering for Industrial 6DOF Visual Servoing
    Ibarguren, Aitor
    Maria Martinez-Otzeta, Jose
    Maurtua, Inaki
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2014, 74 (3-4) : 689 - 696
  • [27] 6DoF Pose Estimation for Industrial Manipulation Based on Synthetic Data
    Brucker, Manuel
    Durner, Maximilian
    Marton, Zoltan-Csaba
    Balint-Benczedi, Ferenc
    Sundermeyer, Martin
    Triebel, Rudolph
    PROCEEDINGS OF THE 2018 INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL ROBOTICS, 2020, 11 : 675 - 684
  • [28] Self-Supervised Domain Adaptation for 6DoF Pose Estimation
    Jin, Juseong
    Jeong, Eunju
    Cho, Joonmyun
    Kim, Young-Gon
    IEEE ACCESS, 2024, 12 : 101528 - 101535
  • [29] Particle Filtering for Industrial 6DOF Visual Servoing
    Aitor Ibarguren
    José María Martínez-Otzeta
    Iñaki Maurtua
    Journal of Intelligent & Robotic Systems, 2014, 74 : 689 - 696
  • [30] 6DoF Pose Estimation with Object Cutout based on a Deep Autoencoder
    Liu, Xin
    Zhang, Jichao
    He, Xian
    Song, Xiuqiang
    Qin, Xueying
    ADJUNCT PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR-ADJUNCT 2019), 2019, : 360 - 365