Points of monotonicity in Musielak-Orlicz function spaces endowed with the Orlicz norm

被引:0
|
作者
Hudzik, H
Liu, X
Wang, T
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, Poznan, Poland
[2] Harbin Normal Univ, Dept Math, Harbin, Peoples R China
[3] Harbin Univ Sci & Technol, Dept Math, Harbin, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2002年 / 60卷 / 3-4期
关键词
Musielak-Orlicz space; Orlicz norm; condition delta two; points of lower monotonicity; points of upper monotonicity; points of lower (upper) local uniform; monotonicity; lower local uniform monotonicity; upper local uniform monotonicity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Points of lower monotonicity, upper monotonicity, lower local uniform monotonicity and upper local uniform monotonicity in Musielak-Orlicz function spaces L-M(O) endowed with the Orlicz norm are characterized. Criteria for lower and upper local uniform monotonicities of L-M(O) are deduced.
引用
收藏
页码:385 / 403
页数:19
相关论文
共 50 条
  • [41] ON MULTIFUNCTIONALS IN THE MUSIELAK-ORLICZ SPACES OF MULTIFUNCTIONS
    KASPERSKI, A
    [J]. MATHEMATISCHE NACHRICHTEN, 1994, 168 : 161 - 169
  • [42] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    [J]. Science China Mathematics, 2019, 62 : 1567 - 1584
  • [43] Weak Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    [J]. REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 195 - 253
  • [44] Martingale Musielak-Orlicz Hardy spaces
    Xie, Guangheng
    Jiao, Yong
    Yang, Dachun
    [J]. SCIENCE CHINA-MATHEMATICS, 2019, 62 (08) : 1567 - 1584
  • [45] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    [J]. Science China Mathematics, 2019, 62 (08) : 1567 - 1584
  • [46] A COMBINATORIAL APPROACH TO MUSIELAK-ORLICZ SPACES
    Prochno, Joscha
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (01): : 132 - 141
  • [47] Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces
    Diening, L
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (08): : 657 - 700
  • [48] Property (k-β) of Musielak-Orlicz and Musielak-Orlicz-Cesaro spaces
    Manna, Atanu
    Srivastava, P. D.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 471 - 486
  • [49] Complex Convexity of Musielak-Orlicz Function Spaces Equipped with the p-Amemiya Norm
    Chen, Lili
    Cui, Yunan
    Zhao, Yanfeng
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [50] Sobolev embeddings in Musielak-Orlicz spaces
    Cianchi, Andrea
    Diening, Lars
    [J]. ADVANCES IN MATHEMATICS, 2024, 447