Spatio-temporal Super-Resolution Using Depth Map

被引:0
|
作者
Awatsu, Yusaku [1 ]
Kawai, Norihiko [1 ]
Sato, Tomokazu [1 ]
Yokoya, Naokazu [1 ]
机构
[1] Nara Inst Sci & Technol, Grad Sch Informat Sci, Nara 6300192, Japan
来源
IMAGE ANALYSIS, PROCEEDINGS | 2009年 / 5575卷
关键词
Super-resolution; Depth map; View interpolation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a spatio-temporal super-resolution method using depth maps for static scenes. In the proposed method, the depth maps are used as the parameters to determine the corresponding pixels in multiple input images by assuming that intrinsic and extrinsic camera, parameters are known. Because the proposed method can determine the corresponding pixels in multiple images by a one-dimensional search for the depth valises without the planar assumption that is often used in the literature, spatial resolution can he increased even for complex scenes. hi addition, since we can use multiple frames, temporal resolution call be increased even when large parts of the image are occluded in the adjacent frame. In experiments, the validity of the proposed method is demonstrated by generating spatio-temporal super-resolution l images for both synthetic and real movies.
引用
收藏
页码:696 / 705
页数:10
相关论文
共 50 条
  • [41] Terahertz Integration and Spatio-Temporal Super-Resolution Imaging on LiNbO3 Chip
    Zhang, Qi
    Wu, Qiang
    Zhang, Bin
    Pan, Chongpei
    Wang, Ride
    Lu, Yao
    Qi, Jiwei
    Xu, Jingjun
    [J]. Zhongguo Jiguang/Chinese Journal of Lasers, 2019, 46 (05):
  • [42] Fast Depth Map Super-Resolution using Deep Neural Network
    Korinevskaya, Alisa
    Makarov, Ilya
    [J]. ADJUNCT PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR), 2018, : 117 - 122
  • [43] Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation
    Caballero, Jose
    Ledig, Christian
    Aitken, Andrew
    Acosta, Alejandro
    Totz, Johannes
    Wang, Zehan
    Shi, Wenzhe
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2848 - 2857
  • [44] Video super-resolution reconstruction based on correlation learning and spatio-temporal nonlocal similarity
    Meiyu Liang
    Junping Du
    Linghui Li
    [J]. Multimedia Tools and Applications, 2016, 75 : 10241 - 10269
  • [45] Guided Depth Map Super-Resolution Using Recumbent Y Network
    Li, Tao
    Dong, Xiucheng
    Lin, Hongwei
    [J]. IEEE ACCESS, 2020, 8 : 122695 - 122708
  • [46] Joint Residual Pyramid for Depth Map Super-Resolution
    Xiao, Yi
    Cao, Xiang
    Zheng, Yan
    Zhu, Xianyi
    [J]. PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 797 - 810
  • [47] JOINT TRILATERAL FILTERING FOR DEPTH MAP SUPER-RESOLUTION
    Lo, Kai-Han
    Wang, Yu-Chiang Frank
    Hua, Kai-Lung
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP 2013), 2013,
  • [48] Super-Resolution of Depth Map Exploiting Planar Surfaces
    Tilo, Tammam
    Jin, Zhi
    Cheng, Fei
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2015, PT II, 2015, 9315 : 632 - 641
  • [49] A Novel Zero-Shot Real World Spatio-Temporal Super-Resolution (ZS-RW-STSR) Model for Video Super-Resolution
    Shukla, Ankit
    Upadhyay, Avinash
    Sharma, Manoj
    Saini, Anil
    Fatema, Nuzhat
    Malik, Hasmat
    Afthanorhan, Asyraf
    Hossaini, Mohammad Asef
    [J]. IEEE ACCESS, 2024, 12 : 123969 - 123984
  • [50] AttGAN: attention gated generative adversarial network for spatio-temporal super-resolution of ocean phenomena
    Liu, Yanni
    Wang, Xinjie
    Yuan, Chunxin
    Xu, Jiexin
    Wei, Zhiqiang
    Nie, Jie
    [J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)