Spatio-temporal Super-Resolution Using Depth Map

被引:0
|
作者
Awatsu, Yusaku [1 ]
Kawai, Norihiko [1 ]
Sato, Tomokazu [1 ]
Yokoya, Naokazu [1 ]
机构
[1] Nara Inst Sci & Technol, Grad Sch Informat Sci, Nara 6300192, Japan
来源
IMAGE ANALYSIS, PROCEEDINGS | 2009年 / 5575卷
关键词
Super-resolution; Depth map; View interpolation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a spatio-temporal super-resolution method using depth maps for static scenes. In the proposed method, the depth maps are used as the parameters to determine the corresponding pixels in multiple input images by assuming that intrinsic and extrinsic camera, parameters are known. Because the proposed method can determine the corresponding pixels in multiple images by a one-dimensional search for the depth valises without the planar assumption that is often used in the literature, spatial resolution can he increased even for complex scenes. hi addition, since we can use multiple frames, temporal resolution call be increased even when large parts of the image are occluded in the adjacent frame. In experiments, the validity of the proposed method is demonstrated by generating spatio-temporal super-resolution l images for both synthetic and real movies.
引用
收藏
页码:696 / 705
页数:10
相关论文
共 50 条
  • [31] Deep inference of latent dynamics with spatio-temporal super-resolution using selective backpropagation through time
    Zhu, Feng
    Sedler, Andrew R.
    Grier, Harrison A.
    Ahad, Nauman
    Davenport, Mark A.
    Kaufman, Matthew T.
    Giovannucci, Andrea
    Pandarinath, Chethan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [32] iSeeBetter: Spatio-temporal video super-resolution using recurrent generative back-projection networks
    Aman Chadha
    John Britto
    M. Mani Roja
    [J]. Computational Visual Media, 2020, 6 : 307 - 317
  • [33] iSeeBetter: Spatio-temporal video super-resolution using recurrent generative back-projection networks
    Chadha, Aman
    Britto, John
    Roja, M. Mani
    [J]. COMPUTATIONAL VISUAL MEDIA, 2020, 6 (03) : 307 - 317
  • [34] iSeeBetter: Spatio-temporal video super-resolution using recurrent generative back-projection networks
    Aman Chadha
    John Britto
    M.Mani Roja
    [J]. Computational Visual Media, 2020, 6 (03) : 307 - 317
  • [35] Spatio-temporal super-resolution for multi-scale coded aperture compresive sensing using DMD
    Zhang, Tinghua
    Li, Chunyang
    Fan, Guihua
    Li, Yingchun
    Zhang, Huaili
    [J]. SEVENTH ASIA PACIFIC CONFERENCE ON OPTICS MANUFACTURE (APCOM 2021), 2022, 12166
  • [36] Terahertz Integration and Spatio-Temporal Super-Resolution Imaging on LiNbO3 Chip
    Zhang Qi
    Wu Qiang
    Zhang Bin
    Pan Chongpei
    Wang Ride
    Lu Yao
    Qi Jiwei
    Xu Jingjun
    [J]. CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (05):
  • [37] Video super-resolution reconstruction based on correlation learning and spatio-temporal nonlocal similarity
    Liang, Meiyu
    Du, Junping
    Li, Linghui
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (17) : 10241 - 10269
  • [38] Cross-Frame Transformer-Based Spatio-Temporal Video Super-Resolution
    Zhang, Wenhui
    Zhou, Mingliang
    Ji, Cheng
    Sui, Xiubao
    Bai, Junqi
    [J]. IEEE TRANSACTIONS ON BROADCASTING, 2022, 68 (02) : 359 - 369
  • [39] Spatio-Temporal Super-Resolution from Compressed Video Employing Global and Local Motion
    Chen, Yue-Meng
    Bajic, Ivan V.
    [J]. 2011 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING (PACRIM), 2011, : 907 - 912
  • [40] STAR: Spatio-Temporal Architecture for Super-Resolution in Low-Dose CT Perfusion
    Xiao, Yao
    Gupta, Ajay
    Sanelli, Pina C.
    Fang, Ruogu
    [J]. MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2017), 2017, 10541 : 97 - 105