On the Admissible Control operators for Linear and Bilinear Systems and the Favard Spaces

被引:10
|
作者
Maragh, F.
Bounit, H. [1 ]
Fadili, A.
Hammouri, H. [2 ]
机构
[1] Fac Sci, Funct Anal Group, Lab Appl Math & Applicat, Agadir Maroc, Morocco
[2] Univ Lyon 1, CNRS, Lab Proc Control & Chem Engn LAGEP, UMR 5007, F-69100 Villeurbanne, France
关键词
Infinite-dimensional systems; semigroups; Favard spaces; unbounded linear (bilinear) control systems; admissibility; abstract linear (bilinear) control systems; boundary control systems; UNBOUNDED CONTROL;
D O I
10.36045/bbms/1414091010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The objective of this work is to give some relationship between the Favard spaces and the p-admissibility (resp. (p, q)-admissibility) of unbounded control operators for linear (resp; bilinear) systems in Banach spaces. For linear case, this enables to give a simple identification of the space of the 1 admissible control operators in Banach space and it enables us to extend the result of Weiss [29] (for p = 1) on reflexive Banach spaces to a general situation. This result is applied to boundary control systems. The results obtained for bilinear systems generalize those given in Idrissi [16] and Berrahmoune [2] and are applied to diffusion equations of fractional order time distributed order.
引用
收藏
页码:711 / 732
页数:22
相关论文
共 50 条
  • [21] FAVARD SPACES AND ADMISSIBILITY FOR VOLTERRA SYSTEMS WITH SCALAR KERNEL
    Bounit, Hamid
    Fadili, Ahmed
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [22] ADMISSIBLE OBSERVATION OPERATORS FOR LINEAR-SEMIGROUPS
    WEISS, G
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1989, 65 (01) : 17 - 43
  • [23] Bilinear fractional integral operators on Morrey spaces
    He, Qianjun
    Yan, Dunyan
    [J]. POSITIVITY, 2021, 25 (02) : 399 - 429
  • [24] Bilinear pseudodifferential operators with symbols in Besov spaces
    Herbert, Jodi
    Naibo, Virginia
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2014, 5 (02) : 231 - 254
  • [25] Extrapolation of compactness on weighted spaces: Bilinear operators
    Hytonen, Tuomas
    Lappas, Stefanos
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (02): : 397 - 420
  • [26] NON-LINEAR CONTROL OF BILINEAR-SYSTEMS
    DERESE, I
    NOLDUS, EJ
    [J]. IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1980, 127 (04): : 169 - 175
  • [27] Schmidt representation of bilinear operators on Hilbert spaces
    da Silva, Eduardo Brandani
    Fernandez, Dicesar Lass
    Neves, Marcus Vinicius de Andrade
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (02): : 494 - 516
  • [28] Compact bilinear operators on asymmetric normed spaces
    Cobzas, S.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2022, 306
  • [29] Transference of bilinear multiplier operators on Lorentz spaces
    Blasco, O
    Villarroya, F
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (04) : 1327 - 1343
  • [30] Bilinear fractional integral operators on Morrey spaces
    Qianjun He
    Dunyan Yan
    [J]. Positivity, 2021, 25 : 399 - 429