Quick and easy one-step parameter estimation in differential equations

被引:16
|
作者
Hall, Peter [1 ,2 ]
Ma, Yanyuan [3 ]
机构
[1] Univ Melbourne, Melbourne, Vic 3010, Australia
[2] Univ Calif Davis, Davis, CA 95616 USA
[3] Texas A&M Univ, College Stn, TX 77843 USA
关键词
Criterion function; Differential equations; Dynamic systems; Kernel estimation; Non-parametric function estimator; One-step procedure; Smoothing parameter; Tuning parameter; DETERMINISTIC DYNAMIC-MODELS;
D O I
10.1111/rssb.12040
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Differential equations are customarily used to describe dynamic systems. Existing methods for estimating unknown parameters in those systems include parameter cascade, which is a spline-based technique, and pseudo-least-squares, which is a local-polynomial-based two-step method. Parameter cascade is often referred to as a 'one-step method', although it in fact involves at least two stages: one to choose the tuning parameter and another to select model parameters. We propose a class of fast, easy-to-use, genuinely one-step procedures for estimating unknown parameters in dynamic system models. This approach does not need extraneous estimation of the tuning parameter; it selects that quantity, as well as all the model parameters, in a single explicit step, and it produces root-n-consistent estimators of all the model parameters. Although it is of course not as accurate as more complex methods, its speed and ease of use make it particularly attractive for exploratory data analysis.
引用
收藏
页码:735 / 748
页数:14
相关论文
共 50 条
  • [41] Comments on "A one-step optimal homotopy analysis method for nonlinear differential equations"
    Marinca, V.
    Herisanu, N.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) : 3735 - 3739
  • [42] STABILITY ANALYSIS OF ONE-STEP METHODS FOR NEUTRAL DELAY-DIFFERENTIAL EQUATIONS
    BELLEN, A
    JACKIEWICZ, Z
    ZENNARO, M
    [J]. NUMERISCHE MATHEMATIK, 1988, 52 (06) : 605 - 619
  • [43] Randomised one-step time integration methods for deterministic operator differential equations
    Lie, Han Cheng
    Stahn, Martin
    Sullivan, T. J.
    [J]. CALCOLO, 2022, 59 (01)
  • [44] A class of one-step one-stage methods for stiff systems of ordinary differential equations
    Bulatov, M. V.
    Tygliyan, A. V.
    Filippov, S. S.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (07) : 1167 - 1180
  • [45] A class of one-step one-stage methods for stiff systems of ordinary differential equations
    M. V. Bulatov
    A. V. Tygliyan
    S. S. Filippov
    [J]. Computational Mathematics and Mathematical Physics, 2011, 51 : 1167 - 1180
  • [46] PARAMETER-ESTIMATION BY INVERSE METHOD BASED ON ONE-STEP AND MULTISTEP OUTFLOW EXPERIMENTS
    CRESCIMANNO, G
    IOVINO, M
    [J]. GEODERMA, 1995, 68 (04) : 257 - 277
  • [47] PARAMETER-ESTIMATION OF HYDRAULIC-PROPERTIES FROM ONE-STEP OUTFLOW DATA
    TOORMAN, AF
    WIERENGA, PJ
    HILLS, RG
    [J]. WATER RESOURCES RESEARCH, 1992, 28 (11) : 3021 - 3028
  • [48] Parameter Estimation in Stochastic Differential Equations
    Weber, G. -W.
    Taylan, P.
    Goerguelue, Z. -K.
    Abd Rahman, H.
    Bahar, A.
    [J]. DYNAMICS, GAMES AND SCIENCE II, 2011, 2 : 703 - +
  • [49] Parameter estimation in uncertain differential equations
    Kai Yao
    Baoding Liu
    [J]. Fuzzy Optimization and Decision Making, 2020, 19 : 1 - 12
  • [50] Parameter estimation of ordinary differential equations
    Li, ZF
    Osborne, MR
    Prvan, T
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (02) : 264 - 285