Parameter estimation of ordinary differential equations

被引:59
|
作者
Li, ZF
Osborne, MR [1 ]
Prvan, T
机构
[1] Australian Natl Univ, Sch Math Sci, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Natl Ctr Epidemiol & Populat Hlth, Canberra, ACT 0200, Australia
[3] Macquarie Univ, Dept Stat, Sydney, NSW 2109, Australia
关键词
ordinary differential equations; data fitting; parameter estimation; orthogonal cyclic reduction; constrained optimization; SQP methods; Gauss-Newton approximation;
D O I
10.1093/imanum/drh016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses the development of a new algorithm for parameter estimation of ordinary differential equations. Here, we show that (1) the simultaneous approach combined with orthogonal cyclic reduction can be used to reduce the estimation problem to an optimization problem subject to a fixed number of equality constraints without the need for structural information to devise a stable embedding in the case of non-trivial dichotomy and (2) the Newton approximation of the Hessian information of the Lagrangian function of the estimation problem should be used in cases where hypothesized models are incorrect or only a limited amount of sample data is available. A new algorithm is proposed which includes the use of the sequential quadratic programming (SQP) Gauss-Newton approximation but also encompasses the SQP Newton approximation along with tests of when to use this approximation. This composite approach relaxes the restrictions on the SQP Gauss-Newton approximation that the hypothesized model should be correct and the sample data set large enough. This new algorithm has been tested on two standard problems.
引用
收藏
页码:264 / 285
页数:22
相关论文
共 50 条
  • [1] Asymptotically efficient parameter estimation for ordinary differential equations
    Pang TianXiao
    Yan PeiSi
    Zhou, Harrison H.
    [J]. SCIENCE CHINA-MATHEMATICS, 2017, 60 (11) : 2263 - 2286
  • [2] Asymptotically efficient parameter estimation for ordinary differential equations
    TianXiao Pang
    PeiSi Yan
    Harrison H. Zhou
    [J]. Science China Mathematics, 2017, 60 : 2263 - 2286
  • [3] A variational approach to parameter estimation in ordinary differential equations
    Kaschek, Daniel
    Timmer, Jens
    [J]. BMC SYSTEMS BIOLOGY, 2012, 6
  • [4] Parameter estimation for high dimensional ordinary differential equations
    Xue, Hongqi
    Linel, Patrice
    Chen, Jinhai
    Yuan, Ya-xiang
    Wu, Hulin
    [J]. INFORMATION TECHNOLOGY, 2015, : 273 - 279
  • [5] A preprocessing method for parameter estimation in ordinary differential equations
    Strebel, Oliver
    [J]. CHAOS SOLITONS & FRACTALS, 2013, 57 : 93 - 104
  • [6] Asymptotically efficient parameter estimation for ordinary differential equations
    PANG TianXiao
    YAN PeiSi
    ZHOU Harrison H.
    [J]. Science China Mathematics, 2017, 60 (11) : 2263 - 2286
  • [7] A Decomposition Approach for Parameter Estimation of System of Ordinary Differential Equations
    Dua, Vivek
    [J]. 20TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2010, 28 : 361 - 366
  • [8] A tracking approach to parameter estimation in linear ordinary differential equations
    Brunel, Nicolas J. B.
    Clairon, Quentin
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 2903 - 2949
  • [9] A Bayesian Collocation Integral Method for Parameter Estimation in Ordinary Differential Equations
    Xu, Mingwei
    Wong, Samuel W. K.
    Sang, Peijun
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (03) : 845 - 854
  • [10] SEQUENTIAL EXPERIMENTAL DESIGN PROCEDURES FOR PRECISE PARAMETER ESTIMATION IN ORDINARY DIFFERENTIAL EQUATIONS
    HOSTEN, LH
    EMIG, G
    [J]. CHEMICAL ENGINEERING SCIENCE, 1975, 30 (11) : 1357 - 1364