The Hopfian property of n-periodic products of groups

被引:6
|
作者
Adian, S. I. [1 ]
Atabekyan, V. S. [2 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Moscow, Russia
[2] Yerevan State Univ, Yerevan 375049, Armenia
基金
俄罗斯基础研究基金会;
关键词
Hopfian group; n-periodic product; periodic group; inheritably normal subgroup; SUBGROUPS;
D O I
10.1134/S000143461403016X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
LetH be a subgroup of a groupG. A normal subgroupN (H) ofH is said to be inheritably normal if there is a normal subgroup N (G) of G such that N (H) = N (G) a (c) H. It is proved in the paper that a subgroup of a factor G (i) of the n-periodic product I (iaI) (n) G (i) with nontrivial factors G (i) is an inheritably normal subgroup if and only if contains the subgroup G (i) (n) . It is also proved that for odd n a parts per thousand yen 665 every nontrivial normal subgroup in a given n-periodic product G = I (iaI) (n) G (i) contains the subgroup G (n) . It follows that almost all n-periodic products G = G (1) (*) (n) G (2) are Hopfian, i.e., they are not isomorphic to any of their proper quotient groups. This allows one to construct nonsimple and not residually finite Hopfian groups of bounded exponents.
引用
收藏
页码:443 / 449
页数:7
相关论文
共 50 条
  • [31] Periodic products of groups
    S. I. Adian
    V. S. Atabekyan
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2017, 52 : 111 - 117
  • [32] A numerical study of N-periodic wave solutions to four integrable equations
    Liang, Zhuo-Yao
    Sun, Jian-Qing
    Yu, Guo-Fu
    Zhong, Yi-Ning
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 116
  • [33] EMBEDDINGS INTO HOPFIAN GROUPS
    MILLER, CF
    SCHUPP, PE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (04): : 654 - &
  • [34] Fixed point theorems for n-periodic mappings in Banach spaces
    Gornickl, Jaroslaw
    Pupka, Krzysztof
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2005, 46 (01): : 33 - 42
  • [35] Linear Complexity of n-Periodic Cyclotomic Sequences over Fp
    Wang, Qiuyan
    Yan, Yang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2020, E103A (05) : 785 - 791
  • [36] A note on Hopfian and co-Hopfian abelian groups
    Goldsmith, B.
    Gong, K.
    GROUPS AND MODEL THEORY, 2012, 576 : 129 - +
  • [37] ON THE EXISTENCE OF UNCOUNTABLE HOPFIAN AND CO-HOPFIAN ABELIAN GROUPS
    Paolini, Gianluca
    Shelah, Saharon
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 257 (02) : 533 - 560
  • [38] On the existence of uncountable Hopfian and co-Hopfian abelian groups
    Gianluca Paolini
    Saharon Shelah
    Israel Journal of Mathematics, 2023, 257 : 533 - 560
  • [39] Sensitivity of Reacting Hypersonic Boundary Layers to n-periodic Surface Roughness
    Margaritis, Athanasios T.
    Sayadi, Taraneh
    Marxen, Olaf
    Schmid, Peter J.
    IUTAM LAMINAR-TURBULENT TRANSITION, 2022, 38 : 599 - 612
  • [40] On some generalizations of Hopfian and co-Hopfian Abelian groups
    Goldsmith, B.
    Gong, K.
    ACTA MATHEMATICA HUNGARICA, 2013, 139 (04) : 393 - 398