The Hopfian property of n-periodic products of groups

被引:6
|
作者
Adian, S. I. [1 ]
Atabekyan, V. S. [2 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Moscow, Russia
[2] Yerevan State Univ, Yerevan 375049, Armenia
基金
俄罗斯基础研究基金会;
关键词
Hopfian group; n-periodic product; periodic group; inheritably normal subgroup; SUBGROUPS;
D O I
10.1134/S000143461403016X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
LetH be a subgroup of a groupG. A normal subgroupN (H) ofH is said to be inheritably normal if there is a normal subgroup N (G) of G such that N (H) = N (G) a (c) H. It is proved in the paper that a subgroup of a factor G (i) of the n-periodic product I (iaI) (n) G (i) with nontrivial factors G (i) is an inheritably normal subgroup if and only if contains the subgroup G (i) (n) . It is also proved that for odd n a parts per thousand yen 665 every nontrivial normal subgroup in a given n-periodic product G = I (iaI) (n) G (i) contains the subgroup G (n) . It follows that almost all n-periodic products G = G (1) (*) (n) G (2) are Hopfian, i.e., they are not isomorphic to any of their proper quotient groups. This allows one to construct nonsimple and not residually finite Hopfian groups of bounded exponents.
引用
收藏
页码:443 / 449
页数:7
相关论文
共 50 条
  • [21] Resistance theory for two classes of n-periodic networks
    Zhi-Zhong Tan
    The European Physical Journal Plus, 137
  • [22] STABILIZATION OF AN EPIDEMIC MODEL VIA AN N-PERIODIC APPROACH
    Canto, Begona
    Coll, Carmen
    Sanchez, Elena
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2018, 28 (01) : 185 - 195
  • [23] Big Mapping Class Groups and the Co-Hopfian Property
    Aramayona, Javier
    Leininger, Christopher J.
    McLeay, Alan
    MICHIGAN MATHEMATICAL JOURNAL, 2024, 74 (02) : 253 - 281
  • [24] N-periodic wave solutions of the N=2 supersymmetric KdV equation
    Li, Zhaohua
    Zhao, Zhonglong
    APPLIED MATHEMATICS LETTERS, 2025, 160
  • [25] Resistance theory for two classes of n-periodic networks
    Tan, Zhi-Zhong
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (05):
  • [26] Stability analysis for n-periodic arrays of fluid systems
    Schmid, Peter J.
    Fosas de Pando, Miguel
    Peake, N.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (11):
  • [27] EMBEDDINGS INTO HOPFIAN GROUPS
    MILLER, CF
    SCHUPP, PE
    JOURNAL OF ALGEBRA, 1971, 17 (02) : 171 - &
  • [28] HOPFIAN ABELIAN GROUPS
    Kaigorodov, Evgeny Vladimirovich
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2012, (18): : 5 - 12
  • [29] Resonance and attenuation in the n-periodic Beverton-Holt equation
    Yang, Yi
    Sacker, Robert J.
    Haskell, Cymra
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (07) : 1174 - 1191
  • [30] Periodic products of groups
    Adian, S. I.
    Atabekyan, V. S.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2017, 52 (03): : 111 - 117