HOLISMOKES: II. Identifying galaxy-scale strong gravitational lenses in Pan-STARRS using convolutional neural networks

被引:45
|
作者
Canameras, R. [1 ]
Schuldt, S. [1 ,2 ]
Suyu, S. H. [1 ,2 ,3 ]
Taubenberger, S. [1 ]
Meinhardt, T. [4 ]
Leal-Taixe, L. [4 ]
Lemon, C. [5 ]
Rojas, K. [5 ]
Savary, E. [5 ]
机构
[1] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany
[2] Tech Univ Munich, Phys Dept, James Franck Str 1, D-85741 Garching, Germany
[3] Acad Sinica, Inst Astron & Astrophys, 11F ASMAB,1,Sect 4,Roosevelt Rd, Taipei 10617, Taiwan
[4] Tech Univ Munich, Dept Informat, Boltzmann Str 3, D-85748 Garching, Germany
[5] Ecole Polytech Federale Lausanne EPFL, Inst Phys, Lab Astrophys, Observ Sauverny, CH-1290 Versoix, Switzerland
基金
美国国家航空航天局; 欧洲研究理事会; 瑞士国家科学基金会; 日本学术振兴会; 美国国家科学基金会; 日本科学技术振兴机构;
关键词
gravitational lensing: strong; methods: data analysis; galaxies: distances and redshifts; surveys; KILO-DEGREE SURVEY; MORPHOLOGICAL CLASSIFICATIONS; DATA RELEASE; SPACE WARPS; ACS SURVEY; MASS; COSMOS; SUPERNOVAE; CLUSTER; ZOO;
D O I
10.1051/0004-6361/202038219
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a systematic search for wide-separation (with Einstein radius theta(E)greater than or similar to 1.5 ''), galaxy-scale strong lenses in the 30 000 deg(2) of the Pan-STARRS 3 pi survey on the Northern sky. With long time delays of a few days to weeks, these types of systems are particularly well-suited for catching strongly lensed supernovae with spatially-resolved multiple images and offer new insights on early-phase supernova spectroscopy and cosmography. We produced a set of realistic simulations by painting lensed COSMOS sources on Pan-STARRS image cutouts of lens luminous red galaxies (LRGs) with redshift and velocity dispersion known from the sloan digital sky survey (SDSS). First, we computed the photometry of mock lenses in gri bands and applied a simple catalog-level neural network to identify a sample of 1 050 207 galaxies with similar colors and magnitudes as the mocks. Second, we trained a convolutional neural network (CNN) on Pan-STARRS gri image cutouts to classify this sample and obtain sets of 105 760 and 12 382 lens candidates with scores of p(CNN)>0.5 and > 0.9, respectively. Extensive tests showed that CNN performances rely heavily on the design of lens simulations and the choice of negative examples for training, but little on the network architecture. The CNN correctly classified 14 out of 16 test lenses, which are previously confirmed lens systems above the detection limit of Pan-STARRS. Finally, we visually inspected all galaxies with p(CNN)>0.9 to assemble a final set of 330 high-quality newly-discovered lens candidates while recovering 23 published systems. For a subset, SDSS spectroscopy on the lens central regions proves that our method correctly identifies lens LRGs at z similar to 0.1-0.7. Five spectra also show robust signatures of high-redshift background sources, and Pan-STARRS imaging confirms one of them as a quadruply-imaged red source at z(s)=1.185, which is likely a recently quenched galaxy strongly lensed by a foreground LRG at z(d)=0.3155. In the future, high-resolution imaging and spectroscopic follow-up will be required to validate Pan-STARRS lens candidates and derive strong lensing models. We also expect that the efficient and automated two-step classification method presented in this paper will be applicable to the similar to 4 mag deeper gri stacks from the Rubin Observatory Legacy Survey of Space and Time (LSST) with minor adjustments
引用
收藏
页数:27
相关论文
共 20 条
  • [1] LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks
    Petrillo, C. E.
    Tortora, C.
    Vernardos, G.
    Koopmans, L. V. E.
    Kleijn, G. Verdoes
    Bilicki, M.
    Napolitano, N. R.
    Chatterjee, S.
    Covone, G.
    Dvornik, A.
    Erben, T.
    Getman, F.
    Giblin, B.
    Heymans, C.
    de Jong, J. T. A.
    Kuijken, K.
    Schneider, P.
    Shan, H.
    Spiniello, C.
    Wright, A. H.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (03) : 3879 - 3896
  • [2] An Extended Catalog of Galaxy-Galaxy Strong Gravitational Lenses Discovered in DES Using Convolutional Neural Networks
    Jacobs, C.
    Collett, T.
    Glazebrook, K.
    Buckley-Geer, E.
    Diehl, H. T.
    Lin, H.
    McCarthy, C.
    Qin, A. K.
    Odden, C.
    Escudero, M. Caso
    Dial, P.
    Yung, V. J.
    Gaitsch, S.
    Pellico, A.
    Lindgren, K. A.
    Abbott, T. M. C.
    Annis, J.
    Avila, S.
    Brooks, D.
    Burke, D. L.
    Carnero Rosell, A.
    Kind, M. Carrasco
    Carretero, J.
    da Costa, L. N.
    De Vicente, J.
    Fosalba, P.
    Frieman, J.
    Garcia-Bellido, J.
    Gaztanaga, E.
    Goldstein, D. A.
    Gruen, D.
    Gruendl, R. A.
    Gschwend, J.
    Hollowood, D. L.
    Honscheid, K.
    Hoyle, B.
    James, D. J.
    Krause, E.
    Kuropatkin, N.
    Lahav, O.
    Lima, M.
    Maia, M. A. G.
    Marshall, J. L.
    Miquel, R.
    Plazas, A. A.
    Roodman, A.
    Sanchez, E.
    Scarpine, V.
    Serrano, S.
    Sevilla-Noarbe, I.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2019, 243 (01):
  • [3] Mass Reconstruction of Galaxy-scale Strong Gravitational Lenses Using a Broken Power-law Model
    Du, Wei
    Fu, Liping
    Shu, Yiping
    Li, Ran
    Fan, Zuhui
    Shu, Chenggang
    [J]. ASTROPHYSICAL JOURNAL, 2023, 953 (02):
  • [4] Modeling lens potentials with continuous neural fields in galaxy-scale strong lenses
    Biggio, L.
    Vernardos, G.
    Galan, A.
    Peel, A.
    Courbin, F.
    [J]. ASTRONOMY & ASTROPHYSICS, 2023, 675
  • [5] Using wavelets to capture deviations from smoothness in galaxy-scale strong lenses
    Galan, A.
    Vernardos, G.
    Peel, A.
    Courbin, F.
    Starck, J. -L.
    [J]. ASTRONOMY & ASTROPHYSICS, 2022, 668
  • [6] Fast automated analysis of strong gravitational lenses with convolutional neural networks
    Yashar D. Hezaveh
    Laurence Perreault Levasseur
    Philip J. Marshall
    [J]. Nature, 2017, 548 : 555 - 557
  • [7] Fast automated analysis of strong gravitational lenses with convolutional neural networks
    Hezaveh, Yashar D.
    Levasseur, Laurence Perreault
    Marshall, Philip J.
    [J]. NATURE, 2017, 548 (7669) : 555 - +
  • [8] Testing convolutional neural networks for finding strong gravitational lenses in KiDS
    Petrillo, C. E.
    Tortora, C.
    Chatterjee, S.
    Vernardos, G.
    Koopmans, L. V. E.
    Kleijn, G. Verdoes
    Napolitano, N. R.
    Covone, G.
    Kelvin, L. S.
    Hopkins, A. M.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 482 (01) : 807 - 820
  • [9] Searching for strong galaxy-scale lenses in galaxy clusters with deep networks I. Methodology and network performance
    Angora, G.
    Rosati, P.
    Meneghetti, M.
    Brescia, M.
    Mercurio, A.
    Grillo, C.
    Bergamini, P.
    Acebron, A.
    Caminha, G.
    Nonino, M.
    Tortorelli, L.
    Bazzanini, L.
    Vanzella, E.
    [J]. ASTRONOMY & ASTROPHYSICS, 2023, 676
  • [10] Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks
    Petrillo, C. E.
    Tortora, C.
    Chatterjee, S.
    Vernardos, G.
    Koopmans, L. V. E.
    Kleijn, G. Verdoes
    Napolitano, N. R.
    Covone, G.
    Schneider, P.
    Grado, A.
    McFarland, J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 472 (01) : 1129 - 1150