Using wavelets to capture deviations from smoothness in galaxy-scale strong lenses

被引:17
|
作者
Galan, A. [1 ]
Vernardos, G. [1 ]
Peel, A. [1 ]
Courbin, F. [1 ]
Starck, J. -L. [2 ]
机构
[1] Observ Sauverny, Ecole Polytech Fed Lausanne EPFL, Inst Phys, Lab Astrophys, 51 Chemin Pegasi, CH-1290 Versoix, Switzerland
[2] Univ Paris, Univ Paris Saclay, CNRS, AIM,CEA,Orme Merisier, F-91191 Gif Sur Yvette, France
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
galaxies; structure; dark matter; methods; data analysis; gravitation; gravitational lensing; strong; DARK-MATTER SUBSTRUCTURE; TO-LIGHT RATIO; GRAVITATIONAL-LENS; SOURCE RECONSTRUCTION; CONTRACTION; INVERSION; INFERENCE; EXPANSION; ASTROPY; SHAPES;
D O I
10.1051/0004-6361/202244464
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Modeling the mass distribution of galaxy-scale strong gravitational lenses is a task of increasing difficulty. The high-resolution and depth of imaging data now available render simple analytical forms ineffective at capturing lens structures spanning a large range in spatial scale, mass scale, and morphology. In this work, we address the problem with a novel multiscale method based on wavelets. We tested our method on simulated Hubble Space Telescope (HST) imaging data of strong lenses containing the following different types of mass substructures making them deviate from smooth models: (1) a localized small dark matter subhalo, (2) a Gaussian random field (GRF) that mimics a nonlocalized population of subhalos along the line of sight, and (3) galaxy-scale multipoles that break elliptical symmetry. We show that wavelets are able to recover all of these structures accurately. This is made technically possible by using gradient-informed optimization based on automatic differentiation over thousands of parameters, which also allow us to sample the posterior distributions of all model parameters simultaneously. By construction, our method merges the two main modeling paradigms - analytical and pixelated - with machine-learning optimization techniques into a single modular framework. It is also well-suited for the fast modeling of large samples of lenses.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] A PCA-based automated finder for galaxy-scale strong lenses
    Joseph, R.
    Courbin, F.
    Metcalf, R. B.
    Giocoli, C.
    Hartley, P.
    Jackson, N.
    Bellagamba, F.
    Kneib, J. -P.
    Koopmans, L.
    Lemson, G.
    Meneghetti, M.
    Meylan, G.
    Petkova, M.
    Pires, S.
    [J]. ASTRONOMY & ASTROPHYSICS, 2014, 566
  • [2] Modeling lens potentials with continuous neural fields in galaxy-scale strong lenses
    Biggio, L.
    Vernardos, G.
    Galan, A.
    Peel, A.
    Courbin, F.
    [J]. ASTRONOMY & ASTROPHYSICS, 2023, 675
  • [3] Mass Reconstruction of Galaxy-scale Strong Gravitational Lenses Using a Broken Power-law Model
    Du, Wei
    Fu, Liping
    Shu, Yiping
    Li, Ran
    Fan, Zuhui
    Shu, Chenggang
    [J]. ASTROPHYSICAL JOURNAL, 2023, 953 (02):
  • [4] On modeling galaxy-scale strong lens systems
    Keeton, Charles R.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (09) : 2151 - 2176
  • [5] On modeling galaxy-scale strong lens systems
    Charles R. Keeton
    [J]. General Relativity and Gravitation, 2010, 42 : 2151 - 2176
  • [6] LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks
    Petrillo, C. E.
    Tortora, C.
    Vernardos, G.
    Koopmans, L. V. E.
    Kleijn, G. Verdoes
    Bilicki, M.
    Napolitano, N. R.
    Chatterjee, S.
    Covone, G.
    Dvornik, A.
    Erben, T.
    Getman, F.
    Giblin, B.
    Heymans, C.
    de Jong, J. T. A.
    Kuijken, K.
    Schneider, P.
    Shan, H.
    Spiniello, C.
    Wright, A. H.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (03) : 3879 - 3896
  • [7] Searching for strong galaxy-scale lenses in galaxy clusters with deep networks I. Methodology and network performance
    Angora, G.
    Rosati, P.
    Meneghetti, M.
    Brescia, M.
    Mercurio, A.
    Grillo, C.
    Bergamini, P.
    Acebron, A.
    Caminha, G.
    Nonino, M.
    Tortorelli, L.
    Bazzanini, L.
    Vanzella, E.
    [J]. ASTRONOMY & ASTROPHYSICS, 2023, 676
  • [8] Extensive light profile fitting of galaxy-scale strong lenses: Towards an automated lens detection method
    Brault, F.
    Gavazzi, R.
    [J]. Astronomy and Astrophysics, 2015, 577
  • [9] Extensive light profile fitting of galaxy-scale strong lenses Towards an automated lens detection method
    Brault, F.
    Gavazzi, R.
    [J]. ASTRONOMY & ASTROPHYSICS, 2015, 577
  • [10] HOLISMOKES: II. Identifying galaxy-scale strong gravitational lenses in Pan-STARRS using convolutional neural networks
    Canameras, R.
    Schuldt, S.
    Suyu, S. H.
    Taubenberger, S.
    Meinhardt, T.
    Leal-Taixe, L.
    Lemon, C.
    Rojas, K.
    Savary, E.
    [J]. ASTRONOMY & ASTROPHYSICS, 2020, 644 (644)