Optimization of density matrix functionals by the Hartree-Fock-Bogoliubov method

被引:41
|
作者
Staroverov, VN [1 ]
Scuseria, GE [1 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2002年 / 117卷 / 24期
关键词
D O I
10.1063/1.1523060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is demonstrated that the "corrected Hartree-Fock" (CHF) density matrix functional proposed by Csanyi and Arias is identical with the Hartree-Fock-Bogoliubov (HFB) functional of the generalized density matrix up to the sign of the pairing energy term. Using this analogy, variational CHF calculations can be performed much more efficiently by solving the HFB equations for the generalized density matrix than by optimizing separately the natural orbitals and their occupations numbers. A family of CHF-type functionals with a scaled pairing energy is introduced and compared to the closely related antisymmetrized geminal power method. (C) 2002 American Institute of Physics.
引用
收藏
页码:11107 / 11112
页数:6
相关论文
共 50 条
  • [1] Natural orbital functionals and the Hartree-Fock-Bogoliubov method.
    Staroverov, VN
    Scuseria, GE
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U464 - U464
  • [2] Application of the gradient method to Hartree-Fock-Bogoliubov theory
    Robledo, L. M.
    Bertsch, G. F.
    [J]. PHYSICAL REVIEW C, 2011, 84 (01):
  • [3] Density-constrained time-dependent Hartree-Fock-Bogoliubov method
    Scamps, Guillaume
    Hashimoto, Yukio
    [J]. PHYSICAL REVIEW C, 2019, 100 (02)
  • [4] A Hartree-Fock-Bogoliubov mass formula
    Samyn, M
    Goriely, S
    Heenen, PH
    Pearson, JM
    Tondeur, F
    [J]. NUCLEAR PHYSICS A, 2002, 700 (1-2) : 142 - 156
  • [5] Matrix product states for Hartree-Fock-Bogoliubov wave functions
    Jin, Hui-Ke
    Sun, Rong-Yang
    Zhou, Yi
    Tu, Hong-Hao
    [J]. PHYSICAL REVIEW B, 2022, 105 (08)
  • [6] HARTREE-FOCK AND HARTREE-FOCK-BOGOLIUBOV CALCULATIONS OF SUPERDEFORMED BANDS
    FLOCARD, H
    CHEN, BQ
    GALL, B
    BONCHE, P
    DOBACZEWSKI, J
    HEENEN, PH
    WEISS, MS
    [J]. NUCLEAR PHYSICS A, 1993, 557 : C559 - C572
  • [7] Application of the inverse Hamiltonian method to Hartree-Fock-Bogoliubov calculations
    Tanimura, Y.
    Hagino, K.
    Ring, P.
    [J]. PHYSICAL REVIEW C, 2013, 88 (01):
  • [8] DENSITY-MATRIX FORMULATION OF HARTREE-FOCK-BOGOLIUBOV EQUATIONS FOR SPACE-DEPENDENT SUPERCONDUCTIVITY
    CLINTON, WL
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1973, : 479 - 489
  • [9] A NUMERICAL PERSPECTIVE ON HARTREE-FOCK-BOGOLIUBOV THEORY
    Lewin, Mathieu
    Paul, Severine
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (01): : 53 - 86
  • [10] Homogeneous Spaces in Hartree-Fock-Bogoliubov Theory
    Alvarado, Claudia D.
    Chiumiento, Eduardo
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (11)