Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results

被引:45
|
作者
Ning, Lipeng [1 ,2 ]
Bonet-Carne, Elisenda [3 ]
Grussu, Francesco [3 ]
Sepehrband, Farshid [4 ]
Kaden, Enrico [3 ]
Veraart, Jelle [5 ]
Blumberg, Stefano B. [3 ]
Khoo, Can Son [3 ]
Palombo, Marco [3 ]
Kokkinos, Iasonas [3 ]
Alexander, Daniel C. [3 ]
Coll-Font, Jaume [2 ,6 ]
Scherrer, Benoit [2 ,6 ]
Warfield, Simon K. [2 ,6 ]
Karayumak, Suheyla Cetin [1 ,2 ]
Rathi, Yogesh [1 ,2 ]
Koppers, Simon [7 ]
Weninger, Leon [7 ]
Ebert, Julia [7 ]
Merhof, Dorit [7 ]
Moyer, Daniel [4 ]
Pietsch, Maximilian [8 ]
Christiaens, Daan [8 ,15 ]
Teixeira, Rui Azeredo Gomes [8 ]
Tournier, Jacques-Donald [8 ]
Schilling, Kurt G. [9 ]
Huo, Yuankai [10 ]
Nath, Vishwesh [10 ]
Hansen, Colin [10 ]
Blaber, Justin [10 ]
Landman, Bennett A. [9 ,10 ,11 ]
Zhylka, Andrey [12 ]
Pluim, Josien P. W. [12 ]
Parker, Greg [13 ]
Rudrapatna, Umesh [13 ]
Evans, John [13 ]
Charron, Cyril [13 ]
Jones, Derek K. [13 ,14 ]
Tax, Chantal M. W. [13 ]
机构
[1] Brigham & Womens Hosp, 75 Francis St, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] UCL, London, England
[4] Univ Southern Calif, Keck Sch Med USC, Stevens Neuroimaging & Informat Inst, Los Angeles, CA 90007 USA
[5] NYU, New York, NY USA
[6] Boston Childrens Hosp, Boston, MA USA
[7] Rhein Westfal TH Aachen, Aachen, Germany
[8] Kings Coll London, Ctr Developing Brain, Sch Biomed Engn & Imaging Sci, London, England
[9] Vanderbilt Univ, Inst Imaging Sci, 221 Kirkland Hall, Nashville, TN 37235 USA
[10] Vanderbilt Univ, Dept Elect Engn & Comp Sci, 221 Kirkland Hall, Nashville, TN 37235 USA
[11] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[12] Eindhoven Univ Technol, Eindhoven, Netherlands
[13] Cardiff Univ, Cardiff Univ Brain Res Imaging Ctr CUBRIC, Cardiff, Wales
[14] Australian Catholic Univ, Sch Psychol, Melbourne, Vic, Australia
[15] Katholieke Univ Leuven, Dept Elect Engn ESAT PSI, Leuven, Belgium
基金
英国惠康基金; 英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Multi-shell diffusion MRI; Harmonization; Spherical harmonics; Deep learning; Regression; SEGMENTATION; REGISTRATION; DISTORTIONS; PERFORMANCE; IMAGES;
D O I
10.1016/j.neuroimage.2020.117128
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies.
引用
收藏
页数:16
相关论文
共 13 条
  • [1] Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms
    Tax, Chantal M. W.
    Grussu, Francesco
    Kaden, Enrico
    Ning, Lipeng
    Rudrapatna, Umesh
    Evans, C. John
    St-Jean, Samuel
    Leemans, Alexander
    Koppers, Simon
    Merhof, Dorit
    Ghosh, Aurobrata
    Tanno, Ryutaro
    Alexander, Daniel C.
    Zappala, Stefano
    Charron, Cyril
    Kusmia, Slawomir
    Linden, David E. J.
    Jones, Derek K.
    Veraart, Jelle
    [J]. NEUROIMAGE, 2019, 195 : 285 - 299
  • [2] Cross-Scanner Harmonization of Neuromelanin-Sensitive MRI for Multi-Site Studies
    Wengler, Kenneth
    Cassidy, Clifford
    van der Pluijm, Marieke
    Weinstein, Jodi
    Abi-Dargham, Anissa
    van de Giessen, Elsmarieke
    Horga, Guillermo
    [J]. BIOLOGICAL PSYCHIATRY, 2021, 89 (09) : S356 - S356
  • [3] Cross-Scanner Harmonization of Neuromelanin-Sensitive MRI for Multisite Studies
    Wengler, Kenneth
    Cassidy, Clifford
    van Der Pluijm, Marieke
    Weinstein, Jodi J.
    Abi-Dargham, Anissa
    van de Giessen, Elsmarieke
    Horga, Guillermo
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (04) : 1189 - 1199
  • [4] Editorial for "Cross-Scanner Harmonization of Neuromelanin-Sensitive MRI for Multisite Studies"
    Wieland, Lara
    Schlagenhauf, Florian
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 55 (05) : 1584 - 1585
  • [5] Cross-scanner reproducibility and harmonization of a diffusion MRI structural brain network: A traveling subject study of multi-b acquisition
    Kurokawa, Ryo
    Kamiya, Kouhei
    Koike, Shinsuke
    Nakaya, Moto
    Uematsu, Akiko
    Tanaka, Saori C.
    Kamagata, Koji
    Okada, Naohiro
    Morita, Kentaro
    Kasai, Kiyoto
    Abe, Osamu
    [J]. NEUROIMAGE, 2021, 245
  • [6] Cross-site harmonization of multi-shell diffusion MRI measures based on rotational invariant spherical harmonics (RISH)
    De Luca, Alberto
    Karayumak, Suheyla Cetin
    Leemans, Alexander
    Rathi, Yogesh
    Swinnen, Stephan
    Gooijers, Jolien
    Clauwaert, Amanda
    Bahr, Roald
    Sandmo, Stian Bahr
    Sochen, Nir
    Kaufmann, David
    Muehlmann, Marc
    Biessels, Geert-Jan
    Koerte, Inga
    Pasternak, Ofer
    [J]. NEUROIMAGE, 2022, 259
  • [7] Cross-scanner harmonization methods for structural MRI may need further work: A comparison study
    Gebre, Robel K.
    Senjem, Matthew L.
    Raghavan, Sheelakumari
    Schwarz, Christopher G.
    Gunter, Jeffery L.
    Hofrenning, Ekaterina I.
    Reid, Robert I.
    Kantarci, Kejal
    Graff-Radford, Jonathan
    Knopman, David S.
    Petersen, Ronald C.
    Jack Jr, Clifford R.
    Vemuri, Prashanthi
    [J]. NEUROIMAGE, 2023, 269
  • [8] Reduced cross-scanner variability using vendor-agnostic sequences for single-shell diffusion MRI
    Liu, Qiang
    Ning, Lipeng
    Shaik, Imam Ahmed
    Liao, Congyu
    Gagoski, Borjan
    Bilgic, Berkin
    Grissom, William
    Nielsen, Jon-Fredrik
    Zaitsev, Maxim
    Rathi, Yogesh
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2024, 92 (01) : 246 - 256
  • [9] Contrastive semi-supervised harmonization of single-shell to multi-shell diffusion MRI
    Hansen, Colin B.
    Schilling, Kurt G.
    Rheault, Francois
    Resnick, Susan
    Shafer, Andrea T.
    Beason-Held, Lori L.
    Landman, Bennett A.
    [J]. MAGNETIC RESONANCE IMAGING, 2022, 93 : 73 - 86
  • [10] Generalized Richardson-Lucy (GRL) for analyzing multi-shell diffusion MRI data
    Guo, Fenghua
    Leemans, Alexander
    Viergever, Max A.
    Dell'Accqua, Flavio
    De Luca, Alberto
    [J]. NEUROIMAGE, 2020, 218