Reduced cross-scanner variability using vendor-agnostic sequences for single-shell diffusion MRI

被引:2
|
作者
Liu, Qiang [1 ,2 ,11 ]
Ning, Lipeng [1 ]
Shaik, Imam Ahmed [1 ]
Liao, Congyu [3 ]
Gagoski, Borjan [4 ,5 ]
Bilgic, Berkin [4 ,6 ,7 ]
Grissom, William [8 ]
Nielsen, Jon-Fredrik [9 ]
Zaitsev, Maxim [10 ]
Rathi, Yogesh [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Boston, MA USA
[2] Southern Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China
[3] Stanford Univ, Dept Radiol, Stanford, CA USA
[4] Harvard Med Sch, Dept Radiol, Boston, MA USA
[5] Boston Childrens Hosp, Fetal Neonatal Neuroimaging & Dev Sci Ctr, Boston, MA USA
[6] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA USA
[7] Harvard MIT Hlth Sci & Technol, Cambridge, MA USA
[8] Case Western Reserve Univ, Case Sch Med, Dept Biomed Engn, Cleveland Hts, OH USA
[9] Univ Michigan, Dept Radiol, Funct MRI Lab, Ann Arbor, MI USA
[10] Univ Freiburg, Univ Med Ctr Freiburg, Fac Med, Dept Diagnost & Intervent Radiol,Div Med Phys, Freiburg, Germany
[11] Harvard Med Sch, Brigham & Womens Hosp, 399 Revolut Dr,Suite 1155, Somerville, MA 02145 USA
关键词
dMRI; MRI harmonization; open MRI; open-source; Pulseq; reproducibility; vendor-agnostic; ECHO-PLANAR IMAGES; TO-NOISE RATIO; TENSOR; REPRODUCIBILITY; ACQUISITIONS; PHANTOM;
D O I
10.1002/mrm.30062
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo reduce the inter-scanner variability of diffusion MRI (dMRI) measures between scanners from different vendors by developing a vendor-neutral dMRI pulse sequence using the open-source vendor-agnostic Pulseq platform. MethodsWe implemented a standard EPI based dMRI sequence in Pulseq. We tested it on two clinical scanners from different vendors (Siemens Prisma and GE Premier), systematically evaluating and comparing the within- and inter-scanner variability across the vendors, using both the vendor-provided and Pulseq dMRI sequences. Assessments covered both a diffusion phantom and three human subjects, using standard error (SE) and Lin's concordance correlation to measure the repeatability and reproducibility of standard DTI metrics including fractional anisotropy (FA) and mean diffusivity (MD). ResultsIdentical dMRI sequences were executed on both scanners using Pulseq. On the phantom, the Pulseq sequence showed more than a 2.5x reduction in SE (variability) across Siemens and GE scanners. Furthermore, Pulseq sequences exhibited markedly reduced SE in-vivo, maintaining scan-rescan repeatability while delivering lower variability in FA and MD (more than 50% reduction in cortical/subcortical regions) compared to vendor-provided sequences. ConclusionThe Pulseq diffusion sequence reduces the cross-scanner variability for both phantom and in-vivo data, which will benefit multi-center neuroimaging studies and improve the reproducibility of neuroimaging studies.
引用
收藏
页码:246 / 256
页数:11
相关论文
共 2 条
  • [1] Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results
    Ning, Lipeng
    Bonet-Carne, Elisenda
    Grussu, Francesco
    Sepehrband, Farshid
    Kaden, Enrico
    Veraart, Jelle
    Blumberg, Stefano B.
    Khoo, Can Son
    Palombo, Marco
    Kokkinos, Iasonas
    Alexander, Daniel C.
    Coll-Font, Jaume
    Scherrer, Benoit
    Warfield, Simon K.
    Karayumak, Suheyla Cetin
    Rathi, Yogesh
    Koppers, Simon
    Weninger, Leon
    Ebert, Julia
    Merhof, Dorit
    Moyer, Daniel
    Pietsch, Maximilian
    Christiaens, Daan
    Teixeira, Rui Azeredo Gomes
    Tournier, Jacques-Donald
    Schilling, Kurt G.
    Huo, Yuankai
    Nath, Vishwesh
    Hansen, Colin
    Blaber, Justin
    Landman, Bennett A.
    Zhylka, Andrey
    Pluim, Josien P. W.
    Parker, Greg
    Rudrapatna, Umesh
    Evans, John
    Charron, Cyril
    Jones, Derek K.
    Tax, Chantal M. W.
    NEUROIMAGE, 2020, 221
  • [2] Learning-based Free-Water Correction using Single-shell Diffusion MRI
    Yao, Tianyuan
    Archer, Derek B.
    Kanakaraj, Praitayini
    Newlin, Nancy
    Bao, Shunxing
    Moyer, Daniel
    Schilling, Kurt
    Landman, Bennett A.
    Huo, Yuankai
    MEDICAL IMAGING 2024: IMAGE PROCESSING, 2024, 12926