Dynamic Bipedal Turning through Sim-to-Real Reinforcement Learning

被引:0
|
作者
Yu, Fangzhou [1 ]
Batke, Ryan [1 ]
Dao, Jeremy [1 ]
Hurst, Jonathan [1 ]
Green, Kevin [1 ]
Fern, Alan [1 ]
机构
[1] Oregon State Univ, Collaborat Robot & Intelligent Syst Inst, Corvallis, OR 97331 USA
关键词
OPTIMIZATION;
D O I
10.1109/HUMANOIDS53995.2022.10000225
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
For legged robots to match the athletic capabilities of humans and animals, they must not only produce robust periodic walking and running, but also seamlessly switch between nominal locomotion gaits and more specialized transient maneuvers. Despite recent advancements in controls of bipedal robots, there has been little focus on producing highly dynamic behaviors. Recent work utilizing reinforcement learning to produce policies for control of legged robots have demonstrated success in producing robust walking behaviors. However, these learned policies have difficulty expressing a multitude of different behaviors on a single network. Inspired by conventional optimization-based control techniques for legged robots, this work applies a recurrent policy to execute four-step, 90 degrees turns trained using reference data generated from optimized single rigid body model trajectories. We present a training framework using epilogue terminal rewards for learning specific behaviors from pre-computed trajectory data and demonstrate a successful transfer to hardware on the bipedal robot Cassie.
引用
收藏
页码:903 / 910
页数:8
相关论文
共 50 条
  • [21] Sim-to-Real Robotic Sketching using Behavior Cloning and Reinforcement Learning
    Jia, Biao (biao@umd.edu), 1600, Institute of Electrical and Electronics Engineers Inc.
  • [22] Sim-to-Real Deep Reinforcement Learning with Manipulators for Pick-and-Place
    Liu, Wenxing
    Niu, Hanlin
    Skilton, Robert
    Carrasco, Joaquin
    TOWARDS AUTONOMOUS ROBOTIC SYSTEMS, TAROS 2023, 2023, 14136 : 240 - 252
  • [23] Human-Guided Reinforcement Learning With Sim-to-Real Transfer for Autonomous Navigation
    Wu, Jingda
    Zhou, Yanxin
    Yang, Haohan
    Huang, Zhiyu
    Lv, Chen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 14745 - 14759
  • [24] Robust Walking and Sim-to-Real Optimization for Quadruped Robots via Reinforcement Learning
    Ji, Chao
    Liu, Diyuan
    Gao, Wei
    Zhang, Shiwu
    JOURNAL OF BIONIC ENGINEERING, 2025, 22 (01) : 107 - 117
  • [25] Cloud-Edge Training Architecture for Sim-to-Real Deep Reinforcement Learning
    Cao, Hongpeng
    Theile, Mirco
    Wyrwal, Federico G.
    Caccamo, Marco
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 9363 - 9370
  • [26] A Survey of Sim-to-Real Transfer Techniques Applied to Reinforcement Learning for Bioinspired Robots
    Zhu, Wei
    Guo, Xian
    Owaki, Dai
    Kutsuzawa, Kyo
    Hayashibe, Mitsuhiro
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (07) : 3444 - 3459
  • [27] Sim-to-real reinforcement learning applied to end-to-end vehicle control
    Kalapos, Andras
    Gor, Csaba
    Moni, Robert
    Harmati, Istvan
    2020 23RD IEEE INTERNATIONAL SYMPOSIUM ON MEASUREMENT AND CONTROL IN ROBOTICS (ISMCR), 2020,
  • [28] DexPoint: Generalizable Point Cloud Reinforcement Learning for Sim-to-Real Dexterous Manipulation
    Qin, Yuzhe
    Huang, Binghao
    Yin, Zhao-Heng
    Su, Hao
    Wang, Xiaolong
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 594 - 605
  • [29] Sim-to-Real Transfer Reinforcement Learning for Position Control of Pneumatic Continuum Manipulator
    Cheng, Qiang
    Liu, Hongshuai
    Gao, Xifeng
    Zhang, Ying
    Hao, Lina
    IEEE ACCESS, 2023, 11 : 126110 - 126118
  • [30] Sim-to-real transfer of active suspension control using deep reinforcement learning
    Wiberg, Viktor
    Wallin, Erik
    Falldin, Arvid
    Semberg, Tobias
    Rossander, Morgan
    Wadbro, Eddie
    Servin, Martin
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2024, 179