The Distribution of Chromium in Multicrystalline Silicon

被引:0
|
作者
Jensen, Mallory Ann [1 ]
Hofstetter, Jasmin [1 ]
Fenning, David P. [1 ]
Morishige, Ashley E. [1 ]
Coletti, Gianluca [2 ]
Lai, Barry [3 ]
Buonassisi, Tonio [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] ECN Solar Energy, NL-1755 LE Petten, Netherlands
[3] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
关键词
chromium; synchrotron-based micro-X-ray fluorescence; photovoltaics; precipitation; multicrystalline silicon;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Metallic impurities such as chromium form Shockley-Read-Hall recombination centers in both p- and n-type silicon, limiting minority-carrier lifetimes and reducing solar cell efficiencies. Much effort has been focused on understanding the distribution and evolution of iron-silicide precipitates during phosphorous diffusion gettering. As interest in n-type silicon grows, other impurities including chromium require similar attention. We elucidate the spatial distribution of chromium-rich particles in intentionally-contaminated multicrystalline silicon using micro-X-ray fluorescence. We find that observed chromium-rich particles are, on average, smaller and in lower density than observed iron-rich particles, likely because of the lower Cr solubility and diffusivity compared to Fe. These experimental observations could enable more accurate modeling of the behavior of chromium in silicon.
引用
收藏
页码:2938 / 2940
页数:3
相关论文
共 50 条
  • [41] Porous silicon upon multicrystalline silicon: Structure and photoluminiscence
    M. M. Melnichenko
    K. V. Svezhentsova
    A. N. Shmyryeva
    Journal of Materials Science, 2005, 40 : 1409 - 1412
  • [42] Multicrystalline silicon crystal assisted by silicon flakes as seeds
    Yuan, Shuai
    Hu, Dongli
    Yu, Xuegong
    He, Liang
    Lei, Qi
    Chen, Hongrong
    Zhang, Xueri
    Xu, Yunfei
    Yang, Deren
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 174 : 202 - 205
  • [43] Multicrystalline silicon solar cells with porous silicon emitter
    Bilyalov, RR
    Lüdemann, R
    Wettling, W
    Stalmans, L
    Poortmans, J
    Nijs, J
    Schirone, L
    Sotgiu, G
    Strehlke, S
    Lévy-Clément, C
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2000, 60 (04) : 391 - 420
  • [44] Porous silicon upon multicrystalline silicon: Structure and photoluminiscence
    Melnichenko, MM
    Svezhentsova, KV
    Shmyryeva, AN
    JOURNAL OF MATERIALS SCIENCE, 2005, 40 (06) : 1409 - 1412
  • [45] Distribution and impact of chromium in compensated solar grade silicon
    Hystad, M.
    Modanese, C.
    Di Sabatino, M.
    Arnberg, L.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 103 : 140 - 146
  • [46] Twinning in multicrystalline silicon for solar cells
    Stokkan, G.
    JOURNAL OF CRYSTAL GROWTH, 2013, 384 : 107 - 113
  • [47] MULTICRYSTALLINE SILICON FOR SOLAR-CELLS
    HELMREICH, D
    JOURNAL DE PHYSIQUE, 1982, 43 (NC1): : 289 - 305
  • [48] Photoluminescence study on defects in multicrystalline silicon
    T. Arguirov
    W. Seifer
    G. Jia
    M. Kittler
    Semiconductors, 2007, 41 : 436 - 439
  • [49] Impurities influence on multicrystalline photovoltaic Silicon
    Beaudhuin, M.
    Zaidat, K.
    Duffar, T.
    Lemiti, M.
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2009, 62 (4-5) : 505 - 509
  • [50] Oxygen and lattice distortions in multicrystalline silicon
    Möller, HJ
    Funke, C
    Lawerenz, A
    Riedel, S
    Werner, M
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2002, 72 (1-4) : 403 - 416