Bark classification based on textural features using artificial neural networks

被引:0
|
作者
Huang, Zhi-Kai [1 ]
Zheng, Chun-Hou
Du, Ji-Xiang
Wan, Yuan-yuan
机构
[1] Chinese Acad Sci, Hefei Inst Intelligenet Machines, Intelligent Comp Lab, Hefei 230031, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Automat, Hefei, Anhui, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new method for bark classification based on textural and fractal dimension features using Artificial Neural Networks is presented. The approach involving the grey level co-occurrence matrices and fractal dimension is used for bark image analysis, which improves the accuracy of bark image classification by combining fractal dimension feature and structural texture features on bark image. Furthermore, we have investigated the relation between Artificial Neural Network (ANN) topologies and bark classification accuracy. Furthermore, the experimental results show the facts that this new approach can automaticly identify the plants categories and the classification accuracy of the new method is better than that of the method using the nearest neighbor classifier.
引用
收藏
页码:355 / 360
页数:6
相关论文
共 50 条
  • [31] Classification of Electroencephalogram Signals Using Artificial Neural Networks
    Rodrigues, Pedro Miguel
    Teixeira, Joao Paulo
    [J]. 2010 3RD INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2010), VOLS 1-7, 2010, : 808 - 812
  • [32] Automated galaxy classification using artificial neural networks
    Odewahn, SC
    [J]. APPLICATIONS OF DIGITAL IMAGE PROCESSING XX, 1997, 3164 : 110 - 119
  • [33] Kannada Dialect Classification using Artificial Neural Networks
    Mothukuri, Siva Krishna P.
    Hegde, Pradyoth
    Chittaragi, Nagaratna B.
    Koolagudi, Shashidhar G.
    [J]. 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2020,
  • [34] Intelligent Classification of Supernovae Using Artificial Neural Networks
    Brito do Nascimento, Francisca Joamila
    Arantes Filho, Luis Ricardo
    Guimaraes, Nogueira Frutuoso
    [J]. INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2019, 22 (63): : 39 - 60
  • [35] Classification of brain tumours using artificial neural networks
    Rao, B. V. Subba
    Kondaveti, Raja
    Prasad, R. V. V. S. V.
    Shanmukha, V.
    Sastry, K. B. S.
    Dasaradharam, Bh.
    [J]. ACTA IMEKO, 2022, 11 (01):
  • [36] Protein loop classification using Artificial Neural Networks
    Vieira, A
    Oliva, B
    [J]. ADVANCES IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, PROCEEDINGS, 2005, 3594 : 222 - 225
  • [37] ECG rhythm classification using artificial neural networks
    Oien, GE
    Bertelsen, NA
    Eftestol, T
    Husoy, JH
    [J]. 1996 IEEE DIGITAL SIGNAL PROCESSING WORKSHOP, PROCEEDINGS, 1996, : 514 - 517
  • [39] Classification of prostatic cancer using artificial neural networks
    Mattfeldtt, T
    Gottfried, HW
    Burger, M
    Kestler, HA
    [J]. FRACTALS IN BIOLOGY AND MEDICINE, VOL III, 2002, : 101 - 111
  • [40] Classification of Seismic Windows Using Artificial Neural Networks
    Diersen, Steve
    Lee, En-Jui
    Spears, Diana
    Chen, Po
    Wang, Liqiang
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS), 2011, 4 : 1572 - 1581