Automated galaxy classification using artificial neural networks

被引:1
|
作者
Odewahn, SC
机构
关键词
artificial neural networks; galaxy morphology;
D O I
10.1117/12.279549
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Current efforts to perform automatic galaxy classification using artificial neural network image classifiers are reviewed. For both digitized photographic Schmidt plate data and newly obtained WFPC2 imagery from the Hubble Space Telescope, a variety of two-dimensional photometric parameter spaces produce a segregation of Hubble types. Through the use of hidden node layers, a neural network is capable of mapping complicated, highly nonlinear data space. This powerful technique is used to map a multivariate photometric parameter space to the revised Hubble system of galaxy classification.
引用
收藏
页码:110 / 119
页数:10
相关论文
共 50 条
  • [2] Galaxy Classification Using Neural Networks: A Review
    Sharma, Pranjal
    Baral, Arijit
    [J]. 2018 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2018, : 179 - 183
  • [3] Classification of Galaxy Morphologies using Artificial Neural Network
    Biswas, Manish
    Adlak, Ritesh
    [J]. 2018 4TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2018,
  • [4] Automated Classification techniques of Galaxies Using Artificial Neural Networks Based Classifiers
    Ata, M. M.
    Mohamed, M. A.
    El-Minir, H. K.
    Abd-El-Fatah, A. I.
    [J]. 2009 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES 2009), 2009, : 157 - +
  • [5] Automated classification of ELODIE stellar spectral library using probabilistic artificial neural networks
    Mahdi, Bazarghan
    [J]. BULLETIN OF THE ASTRONOMICAL SOCIETY OF INDIA, 2008, 36 (01): : 1 - 54
  • [6] Automated spectral classification using Neural Networks
    Vieira, EF
    Ponz, JD
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS VII (ADASS), 1998, 145 : 508 - 511
  • [7] AUTOMATED DEFECT CLASSIFICATION USING AN ARTIFICIAL NEURAL NETWORK
    Chady, T.
    Caryk, M.
    Piekarczyk, B.
    [J]. REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 28A AND 28B, 2009, 1096 : 1591 - 1598
  • [8] Surface classification using artificial neural networks
    Mainsah, E
    Ndumu, DT
    Ndumu, AN
    [J]. THREE-DIMENSIONAL IMAGING AND LASER-BASED SYSTEMS FOR METROLOGY AND INSPECTION II, 1997, 2909 : 139 - 150
  • [9] Plant Classification Using Artificial Neural Networks
    Pacifico, Luciano D. S.
    Macario, Valmir
    Oliveira, Joao F. L.
    [J]. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [10] Artificial Neural Networks in Action for an Automated Cell-Type Classification of Biological Neural Networks
    Troullinou, Eirini
    Tsagkatakis, Grigorios
    Chavlis, Spyridon
    Turi, Gergely F.
    Li, Wenke
    Losonczy, Attila
    Tsakalides, Panagiotis
    Poirazi, Panayiota
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2021, 5 (05): : 755 - 767