On the construction of stationary AR(1) models via random distributions

被引:5
|
作者
Contreras-Cristan, Alberto [1 ]
Mena, Ramses H. [1 ]
Walker, Stephen G. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Mexico City 04510, DF, Mexico
[2] Univ Kent, Inst Math Stat & Actuarial Sci, Canterbury, Kent, England
基金
英国工程与自然科学研究理事会;
关键词
AR model; Beta-Stacy process; Bayesian non-parametrics; discrete-valued time series; Polya trees; stationary process; BAYESIAN NONPARAMETRIC APPROACH; VARIATE TIME-SERIES; AUTOREGRESSIVE MODELS; POLYA TREES; MIXTURES;
D O I
10.1080/02331880802259391
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We explore a method for constructing first-order stationary autoregressive-type models with given marginal distributions. We impose the underlying dependence structure in the model using Bayesian non-parametric predictive distributions. This approach allows for nonlinear dependency and at the same time works for any choice of marginal distribution. In particular, we look at the case of discrete-valued models; that is the marginal distributions are supported on the non-negative integers.
引用
收藏
页码:227 / 240
页数:14
相关论文
共 50 条