A CHARACTERIZATION OF RANDOM-COEFFICIENT AR(1) MODELS

被引:7
|
作者
POTZELBERGER, K
机构
[1] Institut für Statistik und Ökonometrie, CH-4051 Basel
关键词
random-coefficient AR(1) processes; transition probability;
D O I
10.1016/0304-4149(90)90062-W
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give a characterization of random-coefficient autoregressive processes of order 1, using analytical properties of the transition probabilities. As an example we show that these transition probabilities can be used to find solutions of certain integro-differential equations. © 1990.
引用
收藏
页码:171 / 180
页数:10
相关论文
共 50 条
  • [1] Sample covariances of random-coefficient AR(1) panel model
    Leipus, Remigijus
    Philippe, Anne
    Pilipauskaite, Vytaute
    Surgailis, Donatas
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 4527 - 4572
  • [2] Joint aggregation of random-coefficient AR(1) processes with common innovations
    Pilipauskaite, Vytaute
    Surgailis, Donatas
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 101 : 73 - 82
  • [3] Estimating Long Memory in Panel Random-Coefficient AR(1) Data
    Leipus, Remigijus
    Philippe, Anne
    Pilipauskaite, Vytaute
    Surgailis, Donatas
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2020, 41 (04) : 520 - 535
  • [4] Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes
    Pilipauskaite, Vytaute
    Surgailis, Donatas
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (02) : 1011 - 1035
  • [5] CONTEMPORANEOUS AGGREGATION OF TRIANGULAR ARRAY OF RANDOM-COEFFICIENT AR(1) PROCESSES
    Philippe, Anne
    Puplinskaite, Donata
    Surgailis, Donatas
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2014, 35 (01) : 16 - 39
  • [6] AGGREGATION OF RANDOM-COEFFICIENT AR(1) PROCESS WITH INFINITE VARIANCE AND COMMON INNOVATIONS
    Puplinskaite, D.
    Surgailis, D.
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2009, 49 (04) : 446 - 463
  • [7] Aggregation of random-coefficient AR(1) process with infinite variance and common innovations
    D. Puplinskaitė
    D. Surgailis
    [J]. Lithuanian Mathematical Journal, 2009, 49 : 446 - 463
  • [8] AGGREGATION OF A RANDOM-COEFFICIENT AR(1) PROCESS WITH INFINITE VARIANCE AND IDIOSYNCRATIC INNOVATIONS
    Puplinskaite, Donata
    Surgailis, Donatas
    [J]. ADVANCES IN APPLIED PROBABILITY, 2010, 42 (02) : 509 - 527
  • [9] Nonparametric estimation of the distribution of the autoregressive coefficient from panel random-coefficient AR(1) data
    Leipus, Remigijus
    Philippe, Anne
    Pilipauskaite, Vytaute
    Surgailis, Donatas
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 153 : 121 - 135
  • [10] Fuzzy random-coefficient volatility models with financial applications
    Thiagarajah, K.
    Thavaneswaran, A.
    [J]. JOURNAL OF RISK FINANCE, 2006, 7 (05) : 503 - 524