Nonparametric estimation of the distribution of the autoregressive coefficient from panel random-coefficient AR(1) data

被引:3
|
作者
Leipus, Remigijus [1 ,2 ]
Philippe, Anne [3 ,4 ]
Pilipauskaite, Vytaute [2 ,3 ]
Surgailis, Donatas [2 ]
机构
[1] Vilnius Univ, Fac Math & Informat, Naugarduko 24, LT-03225 Vilnius, Lithuania
[2] Vilnius Univ, Inst Math & Informat, Akad 4, LT-08663 Vilnius, Lithuania
[3] Univ Nantes, Lab Math Jean Leray, F-44322 Nantes 3, France
[4] ANJA INRIA Rennes Bretagne Atlantique, Rennes, France
关键词
Random-coefficient autoregression; Empirical process; Kolmogorov-Smirnov statistic; Goodness-of-fit testing; Kernel density estimator; Panel data; LONG MEMORY; DISAGGREGATION SCHEME; RANDOM-VARIABLES; AGGREGATION; INEQUALITIES; MODEL;
D O I
10.1016/j.jmva.2016.09.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss nonparametric estimation of the distribution function G(x) of the autoregressive coefficient a is an element of (-1, 1) from a panel of N random-coefficient AR(1) data, each of length n, by the empirical distribution function of lag 1 sample autocorrelations of individual AR(1) processes. Consistency and asymptotic normality of the empirical distribution function and a class of kernel density estimators is established under some regularity conditions on G(x) as N and n increase to infinity. The Kolmogorov-Smirnov goodness-of-fit test for simple and composite hypotheses of Beta distributed a is discussed. A simulation study for goodness of-fit testing compares the finite-sample performance of our nonparametric estimator to the performance of its parametric analogue discussed in Beran et al. (2010). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:121 / 135
页数:15
相关论文
共 50 条