Stationary mixture transition distribution (MTD) models via predictive distributions

被引:3
|
作者
Mena, Ramses H.
Walker, Stephen G.
机构
[1] Univ Nacl Autonoma Mexico, IIMAS, Dept Probabilidad & Estadist, Mexico City 01000, DF, Mexico
[2] Univ Kent, Canterbury CT2 7NZ, Kent, England
基金
英国工程与自然科学研究理事会;
关键词
AR model; Bayesian non-parametrics; MTD models; random probability measure; stationary process;
D O I
10.1016/j.jspi.2006.05.018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper combines two ideas to construct autoregressive processes of arbitrary order. The first idea is the construction of first order stationary processes described in Pitt et al. [(2002). Constructing first order autoregressive models via latent processes. Scand. J. Statist. 29, 657-663] and the second idea is the construction of higher order processes described in Raftery [(1985). A model for high order Markov chains. J. Roy Statist. Soc. B. 47, 528-539]. The resulting models provide appealing alternatives to model non-linear and non-Gaussian time series. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3103 / 3112
页数:10
相关论文
共 50 条