Delamination-resistant bi-layer electrolyte for anode-supported solid oxide fuel cells

被引:9
|
作者
Park, Mi Young [1 ]
Jung, Yeon-Gil [1 ]
Lim, Hyung-Tae [1 ]
机构
[1] Changwon Natl Univ, Sch Mat Sci & Engn, Chang Won 641773, South Korea
基金
新加坡国家研究基金会;
关键词
Solid oxide fuel cells; Bi-Layer; Cell Imbalance; Delamination; Degradation; OXYGEN; FAILURE; ION;
D O I
10.1016/j.ssi.2014.02.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One of the critical fuel cell degradation phenomena is 'cell imbalance' in a series-connected stack, which can cause abnormal operation under a negative cell voltage and consequently rapid degradation by anode interface delamination. In a previous study, the effect of electrolyte composition on the electrochemical degradation of solid oxide fuel cell (SOFC) was investigated, and it was observed that a small amount of ceria (an electronic conducting material) prevents anode delamination under abnormal (negative voltage) operation. However, the open circuit voltage (OCV) was lowered as a result of reduction of ceria. In the present study, bi-layer, YSZ (8 mol % yttria doped zirconia, a predominantly ionic conductor) at the cathode side and 8CYSZ (8 mol % ceria doped YSZ, a mixed ionic-electronic conductor) at the anode side were fabricated for anode-supported cells with a Pt probe embedded in each layer to estimate the internal oxygen chemical potential and tested under a negative voltage. The results indicated that the OCV was close to the theoretical value (similar to that of a YSZ single layer cell) and no delamination was observed under negative voltage operation (similar to the case of an 8CYSZ single-layer cell). Therefore, the bi-layer-structured electrolyte (with locally increased electronic conduction at the anode side) is effective in preventing anode/electrolyte delamination as well as maintaining open circuit voltage. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:438 / 443
页数:6
相关论文
共 50 条
  • [1] Performance of anode-supported solid oxide fuel cell with thin bi-layer electrolyte by pulsed laser deposition
    Lu, Zigui
    Hardy, John
    Templeton, Jared
    Stevenson, Jeffry
    Fisher, Daniel
    Wu, Naijuan
    Ignatiev, Alex
    JOURNAL OF POWER SOURCES, 2012, 210 : 292 - 296
  • [2] Development of co-sintering process for anode-supported solid oxide fuel cells with gadolinia-doped ceria/lanthanum silicate bi-layer electrolyte
    Takahashi, Susumu
    Sumi, Hirofumi
    Fujishiro, Yoshinobu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (41) : 23377 - 23383
  • [3] An analytical model for solid oxide fuel cells with bi-layer electrolyte
    Shen, Shuanglin
    Guo, Liejin
    Liu, Hongtan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (04) : 1967 - 1975
  • [4] A polarization model for solid oxide fuel cells with a Bi-layer electrolyte
    Shen, Shuanglin
    Guo, Liejin
    Liu, Hongtan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (05) : 3646 - 3654
  • [5] Effect of cosintering of anode–electrolyte bilayer on the fabrication of anode-supported solid oxide fuel cells
    Guo-Bin Jung
    Ching-Jun Wei
    Ay Su
    Fang-Bor Weng
    Yen-Chen Hsu
    Shih-Hung Chan
    Journal of Solid State Electrochemistry, 2008, 12 : 1605 - 1610
  • [6] Improvement of anode-supported solid oxide fuel cells
    Wang, Z. R.
    Qian, J. Q.
    Wang, S. R.
    Cao, J. D.
    Wen, T. L.
    SOLID STATE IONICS, 2008, 179 (27-32) : 1593 - 1596
  • [7] Strength of Anode-Supported Solid Oxide Fuel Cells
    Faes, A.
    Frandsen, H. L.
    Kaiser, A.
    Pihlatie, M.
    FUEL CELLS, 2011, 11 (05) : 682 - 689
  • [8] Development and tests of anode-supported solid oxide fuel cells with electrolyte layer deposited by spin-coating
    Tabuti, F. N.
    Fonseca, F. C.
    Florio, D. Z.
    MATERIA-RIO DE JANEIRO, 2013, 18 (01): : 39 - 45
  • [9] Theoretical analysis of the characteristics of the solid oxide fuel cells with a bi-layer electrolyte
    Shen, Shuanglin
    Guo, Liejin
    Liu, Hongtan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (29) : 13084 - 13090
  • [10] Effect of cosintering of anode-electrolyte bilayer on the fabrication of anode-supported solid oxide fuel cells
    Jung, Guo-Bin
    Wei, Ching-Jun
    Su, Ay
    Weng, Fang-Bor
    Hsu, Yen-Chen
    Chan, Shih-Hung
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (12) : 1605 - 1610